File size: 2,235 Bytes
6e0ae7a 72cd726 6e0ae7a 72cd726 6e0ae7a 72cd726 6e0ae7a 72cd726 6e0ae7a 72cd726 6e0ae7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
model-index:
- name: FingerFriend-t5-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# FingerFriend-t5-small
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7464
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6293 | 1.0 | 171 | 1.1671 |
| 1.195 | 2.0 | 342 | 1.0246 |
| 1.085 | 3.0 | 513 | 0.9553 |
| 1.0207 | 4.0 | 684 | 0.9096 |
| 0.9631 | 5.0 | 855 | 0.8782 |
| 0.9283 | 6.0 | 1026 | 0.8445 |
| 0.8987 | 7.0 | 1197 | 0.8352 |
| 0.8716 | 8.0 | 1368 | 0.8123 |
| 0.8556 | 9.0 | 1539 | 0.7983 |
| 0.8375 | 10.0 | 1710 | 0.7923 |
| 0.8239 | 11.0 | 1881 | 0.7757 |
| 0.8184 | 12.0 | 2052 | 0.7716 |
| 0.8053 | 13.0 | 2223 | 0.7642 |
| 0.7929 | 14.0 | 2394 | 0.7647 |
| 0.7867 | 15.0 | 2565 | 0.7597 |
| 0.7817 | 16.0 | 2736 | 0.7529 |
| 0.7751 | 17.0 | 2907 | 0.7506 |
| 0.7705 | 18.0 | 3078 | 0.7472 |
| 0.7657 | 19.0 | 3249 | 0.7467 |
| 0.7665 | 20.0 | 3420 | 0.7464 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|