--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - f1 - precision model-index: - name: xlm-roberta-large_emotion_ft_0416 results: [] --- # xlm-roberta-large_emotion_ft_0416 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1186 - Accuracy: 0.9415 - F1: 0.9417 - Precision: 0.9177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | 0.8152 | 1.0 | 250 | 0.2905 | 0.902 | 0.9035 | 0.8660 | | 0.215 | 2.0 | 500 | 0.1572 | 0.941 | 0.9409 | 0.9213 | | 0.1274 | 3.0 | 750 | 0.1237 | 0.9445 | 0.9453 | 0.9075 | | 0.101 | 4.0 | 1000 | 0.1186 | 0.9415 | 0.9417 | 0.9177 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.20.3