aaa12963337 commited on
Commit
82eb120
·
1 Parent(s): 71a1511

End of training

Browse files
Files changed (2) hide show
  1. README.md +82 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: shi-labs/nat-mini-in1k-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: msi-nat-mini-pretrain
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: validation
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8662952646239555
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # msi-nat-mini-pretrain
32
+
33
+ This model is a fine-tuned version of [shi-labs/nat-mini-in1k-224](https://huggingface.co/shi-labs/nat-mini-in1k-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8669
36
+ - Accuracy: 0.8663
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 64
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 5
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.1291 | 1.0 | 1562 | 0.3154 | 0.9097 |
71
+ | 0.0636 | 2.0 | 3125 | 0.5941 | 0.8719 |
72
+ | 0.0485 | 3.0 | 4687 | 0.4654 | 0.9110 |
73
+ | 0.0318 | 4.0 | 6250 | 0.7800 | 0.8684 |
74
+ | 0.011 | 5.0 | 7810 | 0.8669 | 0.8663 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.35.2
80
+ - Pytorch 2.0.1+cu118
81
+ - Datasets 2.15.0
82
+ - Tokenizers 0.15.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:979077479af5aa4429bf20f42f621665394fd07a2ec83c170e0a1712230d5eb3
3
  size 77942388
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c203f534ec3b846c5d54be057f80c268491ab29a885e4e1eaccd8ccefd7ac7c
3
  size 77942388