--- license: mit base_model: shi-labs/nat-mini-in1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: msi-nat-mini-pretrain results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8704735376044568 --- # msi-nat-mini-pretrain This model is a fine-tuned version of [shi-labs/nat-mini-in1k-224](https://huggingface.co/shi-labs/nat-mini-in1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Accuracy: 0.8705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1151 | 1.0 | 1562 | 0.2480 | 0.9242 | | 0.0453 | 2.0 | 3125 | 0.5128 | 0.8816 | | 0.0466 | 3.0 | 4686 | 0.6286 | 0.8705 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0