--- license: mit base_model: shi-labs/nat-mini-in1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: msi_mini results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6228683254123567 --- # msi_mini This model is a fine-tuned version of [shi-labs/nat-mini-in1k-224](https://huggingface.co/shi-labs/nat-mini-in1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.5314 - Accuracy: 0.6229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.428 | 1.0 | 2015 | 0.8665 | 0.6079 | | 0.3163 | 2.0 | 4031 | 1.0921 | 0.6169 | | 0.2805 | 3.0 | 6047 | 1.1998 | 0.6082 | | 0.2251 | 4.0 | 8063 | 1.2788 | 0.6126 | | 0.1988 | 5.0 | 10078 | 1.3336 | 0.6121 | | 0.1794 | 6.0 | 12094 | 1.3361 | 0.6224 | | 0.1724 | 7.0 | 14110 | 1.5478 | 0.6097 | | 0.1739 | 8.0 | 16126 | 1.6165 | 0.6169 | | 0.1637 | 9.0 | 18141 | 1.5974 | 0.6134 | | 0.1667 | 10.0 | 20150 | 1.5314 | 0.6229 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0