File size: 47,595 Bytes
ccf4931
 
 
 
 
 
 
 
 
 
 
 
 
0fbc62d
 
 
 
ccf4931
 
0fbc62d
 
28c7f0e
 
ccf4931
 
 
28c7f0e
 
 
45cd7ef
 
 
 
 
 
f1479f3
 
 
45cd7ef
28c7f0e
 
 
ccf4931
 
 
 
 
28c7f0e
0fbc62d
 
 
 
 
 
 
 
 
ccf4931
0fbc62d
 
ccf4931
 
 
 
 
 
0fbc62d
 
28c7f0e
 
0fbc62d
 
ccf4931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fbc62d
ccf4931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fbc62d
 
 
 
 
 
 
ccf4931
 
 
 
0fbc62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccf4931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fbc62d
 
 
 
 
 
 
 
ccf4931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fbc62d
 
 
 
 
 
 
ccf4931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c7f0e
45cd7ef
0fbc62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28c7f0e
 
 
 
 
0fbc62d
 
 
 
 
 
ccf4931
0fbc62d
ccf4931
 
28c7f0e
 
ccf4931
 
28c7f0e
 
ccf4931
 
 
 
 
28c7f0e
 
cde919e
28c7f0e
 
ccf4931
 
28c7f0e
ccf4931
 
 
 
 
 
 
 
28c7f0e
 
 
ccf4931
28c7f0e
cde919e
28c7f0e
 
ccf4931
 
 
 
 
28c7f0e
ccf4931
 
 
28c7f0e
ccf4931
28c7f0e
ccf4931
28c7f0e
ccf4931
28c7f0e
f1479f3
28c7f0e
 
ccf4931
 
28c7f0e
ccf4931
 
 
 
28c7f0e
 
 
 
ccf4931
 
 
 
 
 
28c7f0e
45cd7ef
28c7f0e
 
ccf4931
28c7f0e
ccf4931
28c7f0e
ccf4931
 
 
 
 
 
 
 
28c7f0e
 
ccf4931
28c7f0e
45cd7ef
28c7f0e
0fbc62d
ccf4931
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
[2023-12-11 20:12:03,965] [INFO] [real_accelerator.py:161:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-12-11 20:12:05,820] [WARNING] [runner.py:203:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.
[2023-12-11 20:12:05,820] [INFO] [runner.py:570:main] cmd = /home/t-sokumar/miniconda3/envs/ft/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMSwgMiwgM119 --master_addr=127.0.0.1 --master_port=29500 --enable_each_rank_log=None main.py --data_path local/jsonfile --data_split 1,0,0 --model_name_or_path codellama/CodeLlama-7b-hf --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --max_seq_len 512 --learning_rate 9.65e-6 --weight_decay 0. --num_train_epochs 5 --gradient_accumulation_steps 1 --lr_scheduler_type cosine --num_warmup_steps 0 --seed 1234 --gradient_checkpointing --zero_stage 3 --deepspeed --lora_dim 128 --lora_module_name layers. --output_dir ./output_step1_Codellama_7b_lora_llamahub-devrev --add_eot_token
[2023-12-11 20:12:08,529] [INFO] [real_accelerator.py:161:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-12-11 20:12:10,776] [INFO] [launch.py:145:main] WORLD INFO DICT: {'localhost': [0, 1, 2, 3]}
[2023-12-11 20:12:10,776] [INFO] [launch.py:151:main] nnodes=1, num_local_procs=4, node_rank=0
[2023-12-11 20:12:10,776] [INFO] [launch.py:162:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1, 2, 3]})
[2023-12-11 20:12:10,776] [INFO] [launch.py:163:main] dist_world_size=4
[2023-12-11 20:12:10,776] [INFO] [launch.py:165:main] Setting CUDA_VISIBLE_DEVICES=0,1,2,3
[2023-12-11 20:12:14,340] [INFO] [real_accelerator.py:161:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-12-11 20:12:14,349] [INFO] [real_accelerator.py:161:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-12-11 20:12:14,559] [INFO] [real_accelerator.py:161:get_accelerator] Setting ds_accelerator to cuda (auto detect)
[2023-12-11 20:12:14,602] [INFO] [real_accelerator.py:161:get_accelerator] Setting ds_accelerator to cuda (auto detect)
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/transformers/deepspeed.py:23: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations
  warnings.warn(
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/transformers/deepspeed.py:23: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations
  warnings.warn(
[2023-12-11 20:12:15,940] [INFO] [comm.py:637:init_distributed] cdb=None
[2023-12-11 20:12:15,940] [INFO] [comm.py:668:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/transformers/deepspeed.py:23: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations
  warnings.warn(
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/transformers/deepspeed.py:23: FutureWarning: transformers.deepspeed module is deprecated and will be removed in a future version. Please import deepspeed modules directly from transformers.integrations
  warnings.warn(
[2023-12-11 20:12:16,326] [INFO] [comm.py:637:init_distributed] cdb=None
[2023-12-11 20:12:16,414] [INFO] [comm.py:637:init_distributed] cdb=None
[2023-12-11 20:12:16,446] [INFO] [comm.py:637:init_distributed] cdb=None
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'CodeLlamaTokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'CodeLlamaTokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'CodeLlamaTokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. 
The tokenizer class you load from this checkpoint is 'CodeLlamaTokenizer'. 
The class this function is called from is 'LlamaTokenizer'.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thouroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thouroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thouroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama.LlamaTokenizer'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thouroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565
[2023-12-11 20:12:19,202] [INFO] [partition_parameters.py:348:__exit__] finished initializing model - num_params = 291, num_elems = 6.74B

Loading checkpoint shards:   0%|                                                                                                                            | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards:   0%|                                                                                                                            | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards:   0%|                                                                                                                            | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards:   0%|                                                                                                                            | 0/2 [00:00<?, ?it/s]
Loading checkpoint shards:  50%|██████████████████████████████████████████████████████████                                                          | 1/2 [00:00<00:00,  1.23it/s]
Loading checkpoint shards:  50%|██████████████████████████████████████████████████████████                                                          | 1/2 [00:00<00:00,  1.19it/s]
Loading checkpoint shards:  50%|██████████████████████████████████████████████████████████                                                          | 1/2 [00:00<00:00,  1.20it/s]
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00,  1.02it/s]
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00,  1.04it/s]

Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00,  1.03it/s]
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00,  1.05it/s]

Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00,  1.02it/s]
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:01<00:00,  1.04it/s]

Loading checkpoint shards:  50%|██████████████████████████████████████████████████████████                                                          | 1/2 [00:03<00:03,  3.28s/it]
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:04<00:00,  2.04s/it]
Loading checkpoint shards: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:04<00:00,  2.22s/it]
Using /home/t-sokumar/.cache/torch_extensions/py311_cu121 as PyTorch extensions root...
Using /home/t-sokumar/.cache/torch_extensions/py311_cu121 as PyTorch extensions root...
Using /home/t-sokumar/.cache/torch_extensions/py311_cu121 as PyTorch extensions root...
Using /home/t-sokumar/.cache/torch_extensions/py311_cu121 as PyTorch extensions root...
Detected CUDA files, patching ldflags
Emitting ninja build file /home/t-sokumar/.cache/torch_extensions/py311_cu121/fused_adam/build.ninja...
Building extension module fused_adam...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module fused_adam...
Time to load fused_adam op: 0.10928606986999512 seconds
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/deepspeed/ops/adam/fused_adam.py:96: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
  self._dummy_overflow_buf = get_accelerator().IntTensor([0])
Loading extension module fused_adam...
Loading extension module fused_adam...
Loading extension module fused_adam...
Time to load fused_adam op: 0.20180773735046387 seconds
Time to load fused_adam op: 0.2018909454345703 seconds
Time to load fused_adam op: 0.20151114463806152 seconds
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/deepspeed/ops/adam/fused_adam.py:96: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
  self._dummy_overflow_buf = get_accelerator().IntTensor([0])
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/deepspeed/ops/adam/fused_adam.py:96: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
  self._dummy_overflow_buf = get_accelerator().IntTensor([0])
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/deepspeed/ops/adam/fused_adam.py:96: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:83.)
  self._dummy_overflow_buf = get_accelerator().IntTensor([0])
[2023-12-11 20:12:28,877] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed info: version=0.12.4, git-hash=unknown, git-branch=unknown
[2023-12-11 20:12:28,877] [INFO] [comm.py:662:init_distributed] Distributed backend already initialized
[2023-12-11 20:12:28,899] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False
[2023-12-11 20:12:28,901] [INFO] [logging.py:96:log_dist] [Rank 0] Using client Optimizer as basic optimizer
[2023-12-11 20:12:28,901] [INFO] [logging.py:96:log_dist] [Rank 0] Removing param_group that has no 'params' in the basic Optimizer
[2023-12-11 20:12:28,939] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Basic Optimizer = FusedAdam
[2023-12-11 20:12:28,939] [INFO] [utils.py:56:is_zero_supported_optimizer] Checking ZeRO support for optimizer=FusedAdam type=<class 'deepspeed.ops.adam.fused_adam.FusedAdam'>
[2023-12-11 20:12:28,939] [INFO] [logging.py:96:log_dist] [Rank 0] Creating fp16 ZeRO stage 3 optimizer, MiCS is enabled False, Hierarchical params gather False
[2023-12-11 20:12:28,940] [INFO] [logging.py:96:log_dist] [Rank 0] Creating torch.float16 ZeRO stage 3 optimizer
[2023-12-11 20:12:29,054] [INFO] [utils.py:795:see_memory_usage] Stage 3 initialize beginning
[2023-12-11 20:12:29,055] [INFO] [utils.py:796:see_memory_usage] MA 4.37 GB         Max_MA 4.75 GB         CA 8.93 GB         Max_CA 9 GB 
[2023-12-11 20:12:29,055] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 95.76 GB, percent = 38.1%
[2023-12-11 20:12:29,057] [INFO] [stage3.py:127:__init__] Reduce bucket size 500,000,000
[2023-12-11 20:12:29,057] [INFO] [stage3.py:128:__init__] Prefetch bucket size 30000000
[2023-12-11 20:12:29,164] [INFO] [utils.py:795:see_memory_usage] DeepSpeedZeRoOffload initialize [begin]
[2023-12-11 20:12:29,165] [INFO] [utils.py:796:see_memory_usage] MA 4.37 GB         Max_MA 4.37 GB         CA 8.93 GB         Max_CA 9 GB 
[2023-12-11 20:12:29,165] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 95.77 GB, percent = 38.1%
Parameter Offload: Total persistent parameters: 266240 in 65 params
[2023-12-11 20:12:29,482] [INFO] [utils.py:795:see_memory_usage] DeepSpeedZeRoOffload initialize [end]
[2023-12-11 20:12:29,483] [INFO] [utils.py:796:see_memory_usage] MA 3.54 GB         Max_MA 4.43 GB         CA 8.94 GB         Max_CA 9 GB 
[2023-12-11 20:12:29,483] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 95.79 GB, percent = 38.1%
[2023-12-11 20:12:29,597] [INFO] [utils.py:795:see_memory_usage] Before creating fp16 partitions
[2023-12-11 20:12:29,598] [INFO] [utils.py:796:see_memory_usage] MA 3.54 GB         Max_MA 3.54 GB         CA 8.94 GB         Max_CA 9 GB 
[2023-12-11 20:12:29,598] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 95.78 GB, percent = 38.1%
[2023-12-11 20:12:30,301] [INFO] [utils.py:795:see_memory_usage] After creating fp16 partitions: 3
[2023-12-11 20:12:30,301] [INFO] [utils.py:796:see_memory_usage] MA 3.54 GB         Max_MA 3.54 GB         CA 5.46 GB         Max_CA 9 GB 
[2023-12-11 20:12:30,348] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 96.3 GB, percent = 38.3%
[2023-12-11 20:12:30,468] [INFO] [utils.py:795:see_memory_usage] Before creating fp32 partitions
[2023-12-11 20:12:30,469] [INFO] [utils.py:796:see_memory_usage] MA 3.54 GB         Max_MA 3.54 GB         CA 5.46 GB         Max_CA 5 GB 
[2023-12-11 20:12:30,469] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 93.01 GB, percent = 37.0%
[2023-12-11 20:12:30,579] [INFO] [utils.py:795:see_memory_usage] After creating fp32 partitions
[2023-12-11 20:12:30,580] [INFO] [utils.py:796:see_memory_usage] MA 4.09 GB         Max_MA 4.24 GB         CA 6.16 GB         Max_CA 6 GB 
[2023-12-11 20:12:30,580] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 93.01 GB, percent = 37.0%
[2023-12-11 20:12:30,689] [INFO] [utils.py:795:see_memory_usage] Before initializing optimizer states
[2023-12-11 20:12:30,690] [INFO] [utils.py:796:see_memory_usage] MA 4.09 GB         Max_MA 4.09 GB         CA 6.16 GB         Max_CA 6 GB 
[2023-12-11 20:12:30,690] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 93.01 GB, percent = 37.0%
[2023-12-11 20:12:30,815] [INFO] [utils.py:795:see_memory_usage] After initializing optimizer states
[2023-12-11 20:12:30,815] [INFO] [utils.py:796:see_memory_usage] MA 5.17 GB         Max_MA 5.47 GB         CA 7.54 GB         Max_CA 8 GB 
[2023-12-11 20:12:30,815] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 93.02 GB, percent = 37.0%
[2023-12-11 20:12:30,816] [INFO] [stage3.py:479:_setup_for_real_optimizer] optimizer state initialized
[2023-12-11 20:12:31,320] [INFO] [utils.py:795:see_memory_usage] After initializing ZeRO optimizer
[2023-12-11 20:12:31,321] [INFO] [utils.py:796:see_memory_usage] MA 6.38 GB         Max_MA 6.86 GB         CA 9.23 GB         Max_CA 9 GB 
[2023-12-11 20:12:31,321] [INFO] [utils.py:803:see_memory_usage] CPU Virtual Memory:  used = 93.01 GB, percent = 37.0%
[2023-12-11 20:12:31,321] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed Final Optimizer = FusedAdam
[2023-12-11 20:12:31,322] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed using client LR scheduler
[2023-12-11 20:12:31,322] [INFO] [logging.py:96:log_dist] [Rank 0] DeepSpeed LR Scheduler = <torch.optim.lr_scheduler.LambdaLR object at 0x7f31e5b4f890>
[2023-12-11 20:12:31,322] [INFO] [logging.py:96:log_dist] [Rank 0] step=0, skipped=0, lr=[9.65e-06, 0.0005, 9.65e-06], mom=[(0.9, 0.95), (0.9, 0.95), (0.9, 0.95)]
[2023-12-11 20:12:31,323] [INFO] [config.py:979:print] DeepSpeedEngine configuration:
[2023-12-11 20:12:31,323] [INFO] [config.py:983:print]   activation_checkpointing_config  {
    "partition_activations": false, 
    "contiguous_memory_optimization": false, 
    "cpu_checkpointing": false, 
    "number_checkpoints": null, 
    "synchronize_checkpoint_boundary": false, 
    "profile": false
}
[2023-12-11 20:12:31,323] [INFO] [config.py:983:print]   aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2023-12-11 20:12:31,323] [INFO] [config.py:983:print]   amp_enabled .................. False
[2023-12-11 20:12:31,323] [INFO] [config.py:983:print]   amp_params ................... False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   autotuning_config ............ {
    "enabled": false, 
    "start_step": null, 
    "end_step": null, 
    "metric_path": null, 
    "arg_mappings": null, 
    "metric": "throughput", 
    "model_info": null, 
    "results_dir": "autotuning_results", 
    "exps_dir": "autotuning_exps", 
    "overwrite": true, 
    "fast": true, 
    "start_profile_step": 3, 
    "end_profile_step": 5, 
    "tuner_type": "gridsearch", 
    "tuner_early_stopping": 5, 
    "tuner_num_trials": 50, 
    "model_info_path": null, 
    "mp_size": 1, 
    "max_train_batch_size": null, 
    "min_train_batch_size": 1, 
    "max_train_micro_batch_size_per_gpu": 1.024000e+03, 
    "min_train_micro_batch_size_per_gpu": 1, 
    "num_tuning_micro_batch_sizes": 3
}
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   bfloat16_enabled ............. False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   checkpoint_parallel_write_pipeline  False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   checkpoint_tag_validation_enabled  True
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   checkpoint_tag_validation_fail  False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   comms_config ................. <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7f3193907bd0>
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   communication_data_type ...... None
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   curriculum_enabled_legacy .... False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   curriculum_params_legacy ..... False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   data_efficiency_enabled ...... False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   dataloader_drop_last ......... False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   disable_allgather ............ False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   dump_state ................... False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   dynamic_loss_scale_args ...... {'init_scale': 65536, 'scale_window': 100, 'delayed_shift': 2, 'consecutive_hysteresis': False, 'min_scale': 1}
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   eigenvalue_enabled ........... False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   eigenvalue_gas_boundary_resolution  1
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   eigenvalue_layer_name ........ bert.encoder.layer
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   eigenvalue_layer_num ......... 0
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   eigenvalue_max_iter .......... 100
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   eigenvalue_stability ......... 1e-06
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   eigenvalue_tol ............... 0.01
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   eigenvalue_verbose ........... False
[2023-12-11 20:12:31,324] [INFO] [config.py:983:print]   elasticity_enabled ........... False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   flops_profiler_config ........ {
    "enabled": false, 
    "recompute_fwd_factor": 0.0, 
    "profile_step": 1, 
    "module_depth": -1, 
    "top_modules": 1, 
    "detailed": true, 
    "output_file": null
}
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   fp16_auto_cast ............... False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   fp16_enabled ................. True
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   fp16_master_weights_and_gradients  False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   global_rank .................. 0
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   grad_accum_dtype ............. None
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   gradient_accumulation_steps .. 1
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   gradient_clipping ............ 1.0
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   gradient_predivide_factor .... 1.0
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   hybrid_engine ................ enabled=False max_out_tokens=512 inference_tp_size=1 release_inference_cache=False pin_parameters=True tp_gather_partition_size=8
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   initial_dynamic_scale ........ 65536
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   load_universal_checkpoint .... False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   loss_scale ................... 0
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   memory_breakdown ............. False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   mics_hierarchial_params_gather  False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   mics_shard_size .............. -1
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   monitor_config ............... tensorboard=TensorBoardConfig(enabled=False, output_path='step1_tensorboard/ds_tensorboard_logs/', job_name='step1_model_tensorboard') wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') enabled=False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   nebula_config ................ {
    "enabled": false, 
    "persistent_storage_path": null, 
    "persistent_time_interval": 100, 
    "num_of_version_in_retention": 2, 
    "enable_nebula_load": true, 
    "load_path": null
}
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   optimizer_legacy_fusion ...... False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   optimizer_name ............... None
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   optimizer_params ............. None
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0, 'pipe_partitioned': True, 'grad_partitioned': True}
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   pld_enabled .................. False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   pld_params ................... False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   prescale_gradients ........... False
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   scheduler_name ............... None
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   scheduler_params ............. None
[2023-12-11 20:12:31,325] [INFO] [config.py:983:print]   seq_parallel_communication_data_type  torch.float32
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   sparse_attention ............. None
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   sparse_gradients_enabled ..... False
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   steps_per_print .............. 10
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   train_batch_size ............. 32
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   train_micro_batch_size_per_gpu  8
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   use_data_before_expert_parallel_  False
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   use_node_local_storage ....... False
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   wall_clock_breakdown ......... False
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   weight_quantization_config ... None
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   world_size ................... 4
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   zero_allow_untested_optimizer  False
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   zero_config .................. stage=3 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500,000,000 use_multi_rank_bucket_allreduce=True allgather_partitions=True allgather_bucket_size=500,000,000 overlap_comm=True load_from_fp32_weights=True elastic_checkpoint=False offload_param=DeepSpeedZeroOffloadParamConfig(device='none', nvme_path=None, buffer_count=5, buffer_size=100,000,000, max_in_cpu=1,000,000,000, pin_memory=False) offload_optimizer=DeepSpeedZeroOffloadOptimizerConfig(device='none', nvme_path=None, buffer_count=4, pin_memory=False, pipeline=False, pipeline_read=False, pipeline_write=False, fast_init=False, ratio=1.0) sub_group_size=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=30000000 param_persistence_threshold=10000 model_persistence_threshold=sys.maxsize max_live_parameters=30000000 max_reuse_distance=1,000,000,000 gather_16bit_weights_on_model_save=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False zero_hpz_partition_size=1 zero_quantized_weights=False zero_quantized_nontrainable_weights=False zero_quantized_gradients=False mics_shard_size=-1 mics_hierarchical_params_gather=False memory_efficient_linear=False pipeline_loading_checkpoint=False override_module_apply=True
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   zero_enabled ................. True
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   zero_force_ds_cpu_optimizer .. True
[2023-12-11 20:12:31,326] [INFO] [config.py:983:print]   zero_optimization_stage ...... 3
[2023-12-11 20:12:31,326] [INFO] [config.py:969:print_user_config]   json = {
    "train_batch_size": 32, 
    "train_micro_batch_size_per_gpu": 8, 
    "steps_per_print": 10, 
    "zero_optimization": {
        "stage": 3, 
        "offload_param": {
            "device": "none"
        }, 
        "offload_optimizer": {
            "device": "none"
        }, 
        "stage3_param_persistence_threshold": 1.000000e+04, 
        "stage3_max_live_parameters": 3.000000e+07, 
        "stage3_prefetch_bucket_size": 3.000000e+07, 
        "memory_efficient_linear": false
    }, 
    "fp16": {
        "enabled": true, 
        "loss_scale_window": 100
    }, 
    "gradient_clipping": 1.0, 
    "prescale_gradients": false, 
    "wall_clock_breakdown": false, 
    "hybrid_engine": {
        "enabled": false, 
        "max_out_tokens": 512, 
        "inference_tp_size": 1, 
        "release_inference_cache": false, 
        "pin_parameters": true, 
        "tp_gather_partition_size": 8
    }, 
    "tensorboard": {
        "enabled": false, 
        "output_path": "step1_tensorboard/ds_tensorboard_logs/", 
        "job_name": "step1_model_tensorboard"
    }
}
***** Running training *****
***** Evaluating perplexity, Epoch 0/5 *****
ppl: 4.460639476776123, loss: 1.4952921867370605
Beginning of Epoch 1/5, Total Micro Batches 13
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
/home/t-sokumar/miniconda3/envs/ft/lib/python3.11/site-packages/torch/utils/checkpoint.py:429: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
Model Parameters: 6.927 B, Latency: 4.17s, TFLOPs: 10.04, Samples/sec: 1.92, Time/seq 0.52s, Batch Size: 8, Sequence Length: 512
Invalidate trace cache @ step 0: expected module 6, but got module 0
Model Parameters: 6.927 B, Latency: 3.74s, TFLOPs: 11.20, Samples/sec: 2.14, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.76s, TFLOPs: 11.14, Samples/sec: 2.13, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.63s, TFLOPs: 11.53, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.63s, TFLOPs: 11.53, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.63s, TFLOPs: 11.53, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.63s, TFLOPs: 11.52, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.51, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
[2023-12-11 20:13:11,248] [INFO] [logging.py:96:log_dist] [Rank 0] step=10, skipped=0, lr=[9.097325323776738e-06, 0.00047136400641330245, 9.097325323776738e-06], mom=[(0.9, 0.95), (0.9, 0.95), (0.9, 0.95)]
[2023-12-11 20:13:11,248] [INFO] [timer.py:260:stop] epoch=0/micro_step=10/global_step=10, RunningAvgSamplesPerSec=8.766147695613881, CurrSamplesPerSec=8.809815752797453, MemAllocated=6.88GB, MaxMemAllocated=10.68GB
Model Parameters: 6.927 B, Latency: 3.63s, TFLOPs: 11.52, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.51, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.51, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.24s, TFLOPs: 12.90, Samples/sec: 2.47, Time/seq 0.41s, Batch Size: 8, Sequence Length: 512
***** Evaluating perplexity, Epoch 1/5 *****
Invalidate trace cache @ step 0: expected module 0, but got module 6
ppl: 1.6560871601104736, loss: 0.5044576525688171
Beginning of Epoch 2/5, Total Micro Batches 13
Model Parameters: 6.927 B, Latency: 3.75s, TFLOPs: 11.15, Samples/sec: 2.13, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.76s, TFLOPs: 11.15, Samples/sec: 2.13, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.49, Samples/sec: 2.20, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.51, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.50, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.50, Samples/sec: 2.20, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
[2023-12-11 20:13:49,353] [INFO] [logging.py:96:log_dist] [Rank 0] step=20, skipped=0, lr=[7.565912402977827e-06, 0.00039201618668278893, 7.565912402977827e-06], mom=[(0.9, 0.95), (0.9, 0.95), (0.9, 0.95)]
[2023-12-11 20:13:49,354] [INFO] [timer.py:260:stop] epoch=1/micro_step=7/global_step=20, RunningAvgSamplesPerSec=8.803895836862662, CurrSamplesPerSec=8.791045583607062, MemAllocated=6.88GB, MaxMemAllocated=11.06GB
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.50, Samples/sec: 2.20, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.51, Samples/sec: 2.20, Time/seq 0.45s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.50, Samples/sec: 2.20, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.50, Samples/sec: 2.20, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.47, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.25s, TFLOPs: 12.88, Samples/sec: 2.46, Time/seq 0.41s, Batch Size: 8, Sequence Length: 512
***** Evaluating perplexity, Epoch 2/5 *****
Invalidate trace cache @ step 0: expected module 0, but got module 6
ppl: 1.0178232192993164, loss: 0.01766625978052616
Beginning of Epoch 3/5, Total Micro Batches 13
Model Parameters: 6.927 B, Latency: 3.76s, TFLOPs: 11.13, Samples/sec: 2.13, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.77s, TFLOPs: 11.09, Samples/sec: 2.12, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.49, Samples/sec: 2.20, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
[2023-12-11 20:14:27,532] [INFO] [logging.py:96:log_dist] [Rank 0] step=30, skipped=0, lr=[5.4065894822319335e-06, 0.0002801341700638307, 5.4065894822319335e-06], mom=[(0.9, 0.95), (0.9, 0.95), (0.9, 0.95)]
[2023-12-11 20:14:27,533] [INFO] [timer.py:260:stop] epoch=2/micro_step=4/global_step=30, RunningAvgSamplesPerSec=8.808840107678392, CurrSamplesPerSec=8.779266138519437, MemAllocated=6.88GB, MaxMemAllocated=11.06GB
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.48, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.49, Samples/sec: 2.20, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.49, Samples/sec: 2.20, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.49, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.48, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.49, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.47, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.64s, TFLOPs: 11.49, Samples/sec: 2.20, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.47, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.25s, TFLOPs: 12.86, Samples/sec: 2.46, Time/seq 0.41s, Batch Size: 8, Sequence Length: 512
***** Evaluating perplexity, Epoch 3/5 *****
Invalidate trace cache @ step 0: expected module 0, but got module 6
ppl: 1.0056875944137573, loss: 0.005671397782862186
Beginning of Epoch 4/5, Total Micro Batches 13
[2023-12-11 20:15:05,601] [INFO] [logging.py:96:log_dist] [Rank 0] step=40, skipped=0, lr=[3.1140314200197657e-06, 0.00016134877823936609, 3.1140314200197657e-06], mom=[(0.9, 0.95), (0.9, 0.95), (0.9, 0.95)]
[2023-12-11 20:15:05,601] [INFO] [timer.py:260:stop] epoch=3/micro_step=1/global_step=40, RunningAvgSamplesPerSec=8.818374436983056, CurrSamplesPerSec=8.49120081099869, MemAllocated=6.88GB, MaxMemAllocated=11.06GB
Model Parameters: 6.927 B, Latency: 3.77s, TFLOPs: 11.10, Samples/sec: 2.12, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.77s, TFLOPs: 11.09, Samples/sec: 2.12, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.47, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.47, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.66s, TFLOPs: 11.44, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.66s, TFLOPs: 11.45, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
[2023-12-11 20:15:42,281] [INFO] [logging.py:96:log_dist] [Rank 0] step=50, skipped=0, lr=[1.2134356400744368e-06, 6.28723129572247e-05, 1.2134356400744368e-06], mom=[(0.9, 0.95), (0.9, 0.95), (0.9, 0.95)]
[2023-12-11 20:15:42,281] [INFO] [timer.py:260:stop] epoch=3/micro_step=11/global_step=50, RunningAvgSamplesPerSec=8.800315028679389, CurrSamplesPerSec=8.764479266712412, MemAllocated=6.88GB, MaxMemAllocated=11.06GB
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.47, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.27s, TFLOPs: 12.79, Samples/sec: 2.44, Time/seq 0.41s, Batch Size: 8, Sequence Length: 512
***** Evaluating perplexity, Epoch 4/5 *****
Invalidate trace cache @ step 0: expected module 0, but got module 6
ppl: 1.0032395124435425, loss: 0.0032342304475605488
Beginning of Epoch 5/5, Total Micro Batches 13
Model Parameters: 6.927 B, Latency: 3.77s, TFLOPs: 11.09, Samples/sec: 2.12, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.79s, TFLOPs: 11.05, Samples/sec: 2.11, Time/seq 0.47s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.66s, TFLOPs: 11.45, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.66s, TFLOPs: 11.45, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.66s, TFLOPs: 11.43, Samples/sec: 2.18, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
[2023-12-11 20:16:20,586] [INFO] [logging.py:96:log_dist] [Rank 0] step=60, skipped=0, lr=[1.4020573091929905e-07, 7.2645456434869975e-06, 1.4020573091929905e-07], mom=[(0.9, 0.95), (0.9, 0.95), (0.9, 0.95)]
[2023-12-11 20:16:20,586] [INFO] [timer.py:260:stop] epoch=4/micro_step=8/global_step=60, RunningAvgSamplesPerSec=8.798149665169436, CurrSamplesPerSec=8.756539739490163, MemAllocated=6.88GB, MaxMemAllocated=11.06GB
Model Parameters: 6.927 B, Latency: 3.66s, TFLOPs: 11.45, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.66s, TFLOPs: 11.45, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.65s, TFLOPs: 11.46, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.66s, TFLOPs: 11.44, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.66s, TFLOPs: 11.44, Samples/sec: 2.19, Time/seq 0.46s, Batch Size: 8, Sequence Length: 512
Model Parameters: 6.927 B, Latency: 3.28s, TFLOPs: 12.77, Samples/sec: 2.44, Time/seq 0.41s, Batch Size: 8, Sequence Length: 512
***** Evaluating perplexity, Epoch 5/5 *****
Invalidate trace cache @ step 0: expected module 0, but got module 6
ppl: 1.003004550933838, loss: 0.0030000172555446625
saving the final model ...
[2023-12-11 20:16:53,814] [INFO] [launch.py:347:main] Process 2392412 exits successfully.
[2023-12-11 20:16:54,182] [INFO] [launch.py:347:main] Process 2392414 exits successfully.
[2023-12-11 20:16:54,182] [INFO] [launch.py:347:main] Process 2392413 exits successfully.
[2023-12-11 20:18:58,197] [INFO] [launch.py:347:main] Process 2392411 exits successfully.