File size: 2,522 Bytes
5d36f54
3138b6d
 
 
 
5d36f54
3138b6d
44af656
 
 
 
 
 
 
 
 
 
 
 
2b45cf1
 
 
5d36f54
 
3138b6d
 
5d36f54
3138b6d
5d36f54
3138b6d
 
 
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
 
 
 
 
 
 
 
 
 
5d36f54
3138b6d
5d36f54
3138b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d36f54
 
3138b6d
5d36f54
3138b6d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: bert-finetuned-uncased-squad_v2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: SQuAD v2
      type: squad_v2
      split: validation
    metrics:
    - type: exact
      value: 100.0
      name: Exact
    - type: f1
      value: 100.0
      name: F1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-uncased-squad_v2

This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1459

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2307        | 0.2   | 100  | 1.8959          |
| 1.9581        | 0.39  | 200  | 1.4856          |
| 1.6358        | 0.59  | 300  | 1.3948          |
| 1.4964        | 0.78  | 400  | 1.2934          |
| 1.4169        | 0.98  | 500  | 1.2605          |
| 1.327         | 1.18  | 600  | 1.2218          |
| 1.2763        | 1.37  | 700  | 1.2539          |
| 1.2755        | 1.57  | 800  | 1.2090          |
| 1.251         | 1.76  | 900  | 1.2041          |
| 1.229         | 1.96  | 1000 | 1.2159          |
| 1.1921        | 2.16  | 1100 | 1.1828          |
| 1.1926        | 2.35  | 1200 | 1.2120          |
| 1.1606        | 2.55  | 1300 | 1.1737          |
| 1.1486        | 2.75  | 1400 | 1.1469          |
| 1.1195        | 2.94  | 1500 | 1.1459          |
| 1.0883        | 3.14  | 1600 | 1.1570          |
| 1.0526        | 3.33  | 1700 | 1.1771          |
| 1.0611        | 3.53  | 1800 | 1.1740          |
| 1.0521        | 3.73  | 1900 | 1.1596          |
| 1.0476        | 3.92  | 2000 | 1.1538          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1