File size: 3,362 Bytes
5d36f54
ddcb5e5
 
 
 
5d36f54
ddcb5e5
aff1c2a
 
 
 
 
 
 
 
 
 
 
 
7ae370b
 
 
caa2fcb
 
 
c6dd5b4
 
 
b9d6920
 
 
4d78dd3
 
 
4f16901
 
 
d5e9138
 
 
4450aa6
 
 
ba0d5a1
 
 
73a285d
 
 
20b8941
 
 
7df46c8
 
 
5d36f54
 
ddcb5e5
 
5d36f54
ddcb5e5
5d36f54
ddcb5e5
 
 
5d36f54
ddcb5e5
5d36f54
ddcb5e5
5d36f54
ddcb5e5
5d36f54
ddcb5e5
5d36f54
ddcb5e5
5d36f54
ddcb5e5
5d36f54
ddcb5e5
5d36f54
ddcb5e5
5d36f54
ddcb5e5
 
 
 
 
 
 
 
 
 
5d36f54
ddcb5e5
5d36f54
ddcb5e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d36f54
 
ddcb5e5
5d36f54
ddcb5e5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: bert-finetuned-uncased-squad_v2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: SQuAD v2
      type: squad_v2
      split: validation
    metrics:
    - type: exact
      value: 100.0
      name: Exact
    - type: f1
      value: 100.0
      name: F1
    - type: total
      value: 2
      name: Total
    - type: HasAns_exact
      value: 100.0
      name: Hasans_exact
    - type: HasAns_f1
      value: 100.0
      name: Hasans_f1
    - type: HasAns_total
      value: 2
      name: Hasans_total
    - type: best_exact
      value: 100.0
      name: Best_exact
    - type: best_exact_thresh
      value: 0.9558643102645874
      name: Best_exact_thresh
    - type: best_f1
      value: 100.0
      name: Best_f1
    - type: best_f1_thresh
      value: 0.9558643102645874
      name: Best_f1_thresh
    - type: total_time_in_seconds
      value: 0.03477841000130866
      name: Total_time_in_seconds
    - type: samples_per_second
      value: 57.506941804548944
      name: Samples_per_second
    - type: latency_in_seconds
      value: 0.01738920500065433
      name: Latency_in_seconds
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-uncased-squad_v2

This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1459

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2307        | 0.2   | 100  | 1.8959          |
| 1.9581        | 0.39  | 200  | 1.4856          |
| 1.6358        | 0.59  | 300  | 1.3948          |
| 1.4964        | 0.78  | 400  | 1.2934          |
| 1.4169        | 0.98  | 500  | 1.2605          |
| 1.327         | 1.18  | 600  | 1.2218          |
| 1.2763        | 1.37  | 700  | 1.2539          |
| 1.2755        | 1.57  | 800  | 1.2090          |
| 1.251         | 1.76  | 900  | 1.2041          |
| 1.229         | 1.96  | 1000 | 1.2159          |
| 1.1921        | 2.16  | 1100 | 1.1828          |
| 1.1926        | 2.35  | 1200 | 1.2120          |
| 1.1606        | 2.55  | 1300 | 1.1737          |
| 1.1486        | 2.75  | 1400 | 1.1469          |
| 1.1195        | 2.94  | 1500 | 1.1459          |
| 1.0883        | 3.14  | 1600 | 1.1570          |
| 1.0526        | 3.33  | 1700 | 1.1771          |
| 1.0611        | 3.53  | 1800 | 1.1740          |
| 1.0521        | 3.73  | 1900 | 1.1596          |
| 1.0476        | 3.92  | 2000 | 1.1538          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1