File size: 3,173 Bytes
5d36f54
3138b6d
 
 
 
5d36f54
3138b6d
44af656
 
 
 
 
 
 
 
 
 
 
 
2b45cf1
 
 
e8d3c32
 
 
821472d
 
 
b6f677c
 
 
0874197
 
 
623bb73
 
 
97e8157
 
 
f5954d0
 
 
408c686
 
 
805d50d
 
 
5d36f54
 
3138b6d
 
5d36f54
3138b6d
5d36f54
3138b6d
 
 
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
5d36f54
3138b6d
 
 
 
 
 
 
 
 
 
5d36f54
3138b6d
5d36f54
3138b6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d36f54
 
3138b6d
5d36f54
3138b6d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: bert-finetuned-uncased-squad_v2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: SQuAD v2
      type: squad_v2
      split: validation
    metrics:
    - type: exact
      value: 100.0
      name: Exact
    - type: f1
      value: 100.0
      name: F1
    - type: total
      value: 2
      name: Total
    - type: HasAns_exact
      value: 100.0
      name: Hasans_exact
    - type: HasAns_f1
      value: 100.0
      name: Hasans_f1
    - type: HasAns_total
      value: 2
      name: Hasans_total
    - type: best_exact
      value: 100.0
      name: Best_exact
    - type: best_exact_thresh
      value: 0.9558643102645874
      name: Best_exact_thresh
    - type: best_f1
      value: 100.0
      name: Best_f1
    - type: best_f1_thresh
      value: 0.9558643102645874
      name: Best_f1_thresh
    - type: total_time_in_seconds
      value: 0.03311239500180818
      name: Total_time_in_seconds
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-uncased-squad_v2

This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1459

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2307        | 0.2   | 100  | 1.8959          |
| 1.9581        | 0.39  | 200  | 1.4856          |
| 1.6358        | 0.59  | 300  | 1.3948          |
| 1.4964        | 0.78  | 400  | 1.2934          |
| 1.4169        | 0.98  | 500  | 1.2605          |
| 1.327         | 1.18  | 600  | 1.2218          |
| 1.2763        | 1.37  | 700  | 1.2539          |
| 1.2755        | 1.57  | 800  | 1.2090          |
| 1.251         | 1.76  | 900  | 1.2041          |
| 1.229         | 1.96  | 1000 | 1.2159          |
| 1.1921        | 2.16  | 1100 | 1.1828          |
| 1.1926        | 2.35  | 1200 | 1.2120          |
| 1.1606        | 2.55  | 1300 | 1.1737          |
| 1.1486        | 2.75  | 1400 | 1.1469          |
| 1.1195        | 2.94  | 1500 | 1.1459          |
| 1.0883        | 3.14  | 1600 | 1.1570          |
| 1.0526        | 3.33  | 1700 | 1.1771          |
| 1.0611        | 3.53  | 1800 | 1.1740          |
| 1.0521        | 3.73  | 1900 | 1.1596          |
| 1.0476        | 3.92  | 2000 | 1.1538          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1