File size: 3,361 Bytes
5d36f54 3138b6d 5d36f54 3138b6d 44af656 2b45cf1 e8d3c32 821472d b6f677c 0874197 623bb73 97e8157 f5954d0 408c686 805d50d 67ed7a1 d12f98f 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d 5d36f54 3138b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: bert-finetuned-uncased-squad_v2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: SQuAD v2
type: squad_v2
split: validation
metrics:
- type: exact
value: 100.0
name: Exact
- type: f1
value: 100.0
name: F1
- type: total
value: 2
name: Total
- type: HasAns_exact
value: 100.0
name: Hasans_exact
- type: HasAns_f1
value: 100.0
name: Hasans_f1
- type: HasAns_total
value: 2
name: Hasans_total
- type: best_exact
value: 100.0
name: Best_exact
- type: best_exact_thresh
value: 0.9558643102645874
name: Best_exact_thresh
- type: best_f1
value: 100.0
name: Best_f1
- type: best_f1_thresh
value: 0.9558643102645874
name: Best_f1_thresh
- type: total_time_in_seconds
value: 0.03311239500180818
name: Total_time_in_seconds
- type: samples_per_second
value: 60.40034252704419
name: Samples_per_second
- type: latency_in_seconds
value: 0.01655619750090409
name: Latency_in_seconds
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-uncased-squad_v2
This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1459
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.2307 | 0.2 | 100 | 1.8959 |
| 1.9581 | 0.39 | 200 | 1.4856 |
| 1.6358 | 0.59 | 300 | 1.3948 |
| 1.4964 | 0.78 | 400 | 1.2934 |
| 1.4169 | 0.98 | 500 | 1.2605 |
| 1.327 | 1.18 | 600 | 1.2218 |
| 1.2763 | 1.37 | 700 | 1.2539 |
| 1.2755 | 1.57 | 800 | 1.2090 |
| 1.251 | 1.76 | 900 | 1.2041 |
| 1.229 | 1.96 | 1000 | 1.2159 |
| 1.1921 | 2.16 | 1100 | 1.1828 |
| 1.1926 | 2.35 | 1200 | 1.2120 |
| 1.1606 | 2.55 | 1300 | 1.1737 |
| 1.1486 | 2.75 | 1400 | 1.1469 |
| 1.1195 | 2.94 | 1500 | 1.1459 |
| 1.0883 | 3.14 | 1600 | 1.1570 |
| 1.0526 | 3.33 | 1700 | 1.1771 |
| 1.0611 | 3.53 | 1800 | 1.1740 |
| 1.0521 | 3.73 | 1900 | 1.1596 |
| 1.0476 | 3.92 | 2000 | 1.1538 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|