jonathanagustin
commited on
Commit
•
fa99127
1
Parent(s):
546974f
Model save
Browse files- README.md +48 -215
- trainer_state.json +9 -9
- training_args.bin +1 -1
README.md
CHANGED
@@ -1,235 +1,68 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
4 |
model-index:
|
5 |
-
- name: bert-finetuned-uncased
|
6 |
-
results:
|
7 |
-
- task:
|
8 |
-
type: question-answering
|
9 |
-
dataset:
|
10 |
-
name: SQuAD v2
|
11 |
-
type: squad_v2
|
12 |
-
metrics:
|
13 |
-
- type: Exact
|
14 |
-
value: 27.878379516550154
|
15 |
-
- type: F1
|
16 |
-
value: 32.12991628283337
|
17 |
-
- type: Total
|
18 |
-
value: 11873
|
19 |
-
- type: Hasans Exact
|
20 |
-
value: 50.40485829959514
|
21 |
-
- type: Hasans F1
|
22 |
-
value: 58.920124160944766
|
23 |
-
- type: Hasans Total
|
24 |
-
value: 5928
|
25 |
-
- type: Noans Exact
|
26 |
-
value: 5.416316232127839
|
27 |
-
- type: Noans F1
|
28 |
-
value: 5.416316232127839
|
29 |
-
- type: Noans Total
|
30 |
-
value: 5945
|
31 |
-
- type: Best Exact
|
32 |
-
value: 50.11370336056599
|
33 |
-
- type: Best Exact Thresh
|
34 |
-
value: 0.0
|
35 |
-
- type: Best F1
|
36 |
-
value: 50.11370336056599
|
37 |
-
- type: Best F1 Thresh
|
38 |
-
value: 0.0
|
39 |
---
|
40 |
|
41 |
-
|
|
|
42 |
|
43 |
-
|
44 |
|
|
|
|
|
|
|
45 |
|
|
|
46 |
|
47 |
-
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
52 |
|
|
|
53 |
|
|
|
54 |
|
55 |
-
|
56 |
-
- **Shared by [optional]:** [More Information Needed]
|
57 |
-
- **Model type:** [More Information Needed]
|
58 |
-
- **Language(s) (NLP):** en
|
59 |
-
- **License:** mit
|
60 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
61 |
|
62 |
-
###
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
- **Paper [optional]:** [More Information Needed]
|
68 |
-
- **Demo [optional]:** [More Information Needed]
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
73 |
-
|
74 |
-
### Direct Use
|
75 |
-
|
76 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
77 |
-
|
78 |
-
[More Information Needed]
|
79 |
-
|
80 |
-
### Downstream Use [optional]
|
81 |
-
|
82 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
83 |
-
|
84 |
-
[More Information Needed]
|
85 |
-
|
86 |
-
### Out-of-Scope Use
|
87 |
-
|
88 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
## Bias, Risks, and Limitations
|
93 |
-
|
94 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
95 |
-
|
96 |
-
[More Information Needed]
|
97 |
-
|
98 |
-
### Recommendations
|
99 |
-
|
100 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
101 |
-
|
102 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
103 |
-
|
104 |
-
## How to Get Started with the Model
|
105 |
-
|
106 |
-
Use the code below to get started with the model.
|
107 |
-
|
108 |
-
[More Information Needed]
|
109 |
-
|
110 |
-
## Training Details
|
111 |
-
|
112 |
-
### Training Data
|
113 |
-
|
114 |
-
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
115 |
-
|
116 |
-
[More Information Needed]
|
117 |
-
|
118 |
-
### Training Procedure
|
119 |
-
|
120 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
121 |
-
|
122 |
-
#### Preprocessing [optional]
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
|
127 |
-
#### Training Hyperparameters
|
128 |
-
|
129 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
130 |
-
|
131 |
-
#### Speeds, Sizes, Times [optional]
|
132 |
-
|
133 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
134 |
-
|
135 |
-
[More Information Needed]
|
136 |
-
|
137 |
-
## Evaluation
|
138 |
-
|
139 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
140 |
-
|
141 |
-
### Testing Data, Factors & Metrics
|
142 |
-
|
143 |
-
#### Testing Data
|
144 |
-
|
145 |
-
<!-- This should link to a Data Card if possible. -->
|
146 |
-
|
147 |
-
[More Information Needed]
|
148 |
-
|
149 |
-
#### Factors
|
150 |
-
|
151 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
152 |
-
|
153 |
-
[More Information Needed]
|
154 |
-
|
155 |
-
#### Metrics
|
156 |
-
|
157 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
158 |
-
|
159 |
-
[More Information Needed]
|
160 |
-
|
161 |
-
### Results
|
162 |
-
|
163 |
-
[More Information Needed]
|
164 |
-
|
165 |
-
#### Summary
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
## Model Examination [optional]
|
170 |
-
|
171 |
-
<!-- Relevant interpretability work for the model goes here -->
|
172 |
-
|
173 |
-
[More Information Needed]
|
174 |
-
|
175 |
-
## Environmental Impact
|
176 |
-
|
177 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
178 |
-
|
179 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
180 |
-
|
181 |
-
- **Hardware Type:** [More Information Needed]
|
182 |
-
- **Hours used:** [More Information Needed]
|
183 |
-
- **Cloud Provider:** [More Information Needed]
|
184 |
-
- **Compute Region:** [More Information Needed]
|
185 |
-
- **Carbon Emitted:** [More Information Needed]
|
186 |
-
|
187 |
-
## Technical Specifications [optional]
|
188 |
-
|
189 |
-
### Model Architecture and Objective
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
### Compute Infrastructure
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
#### Hardware
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
#### Software
|
202 |
-
|
203 |
-
[More Information Needed]
|
204 |
-
|
205 |
-
## Citation [optional]
|
206 |
-
|
207 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
208 |
-
|
209 |
-
**BibTeX:**
|
210 |
-
|
211 |
-
[More Information Needed]
|
212 |
-
|
213 |
-
**APA:**
|
214 |
-
|
215 |
-
[More Information Needed]
|
216 |
-
|
217 |
-
## Glossary [optional]
|
218 |
-
|
219 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
220 |
-
|
221 |
-
[More Information Needed]
|
222 |
-
|
223 |
-
## More Information [optional]
|
224 |
-
|
225 |
-
[More Information Needed]
|
226 |
-
|
227 |
-
## Model Card Authors [optional]
|
228 |
-
|
229 |
-
[More Information Needed]
|
230 |
-
|
231 |
-
## Model Card Contact
|
232 |
-
|
233 |
-
[More Information Needed]
|
234 |
|
|
|
235 |
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- squad_v2
|
6 |
model-index:
|
7 |
+
- name: bert-finetuned-uncased-squad_v2
|
8 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
+
# bert-finetuned-uncased-squad_v2
|
15 |
|
16 |
+
This model was trained from scratch on the squad_v2 dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.2041
|
19 |
|
20 |
+
## Model description
|
21 |
|
22 |
+
More information needed
|
23 |
|
24 |
+
## Intended uses & limitations
|
25 |
|
26 |
+
More information needed
|
27 |
|
28 |
+
## Training and evaluation data
|
29 |
|
30 |
+
More information needed
|
31 |
|
32 |
+
## Training procedure
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
### Training hyperparameters
|
35 |
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 2e-05
|
38 |
+
- train_batch_size: 128
|
39 |
+
- eval_batch_size: 128
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 4
|
42 |
+
- total_train_batch_size: 512
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 2
|
46 |
|
47 |
+
### Training results
|
|
|
|
|
48 |
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
+
| 3.2307 | 0.2 | 100 | 1.8959 |
|
52 |
+
| 1.9581 | 0.39 | 200 | 1.4856 |
|
53 |
+
| 1.6358 | 0.59 | 300 | 1.3948 |
|
54 |
+
| 1.4964 | 0.78 | 400 | 1.2934 |
|
55 |
+
| 1.4169 | 0.98 | 500 | 1.2605 |
|
56 |
+
| 1.327 | 1.18 | 600 | 1.2218 |
|
57 |
+
| 1.2763 | 1.37 | 700 | 1.2539 |
|
58 |
+
| 1.2755 | 1.57 | 800 | 1.2090 |
|
59 |
+
| 1.251 | 1.76 | 900 | 1.2041 |
|
60 |
+
| 1.229 | 1.96 | 1000 | 1.2159 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
### Framework versions
|
64 |
|
65 |
+
- Transformers 4.34.1
|
66 |
+
- Pytorch 2.1.0+cu118
|
67 |
+
- Datasets 2.14.5
|
68 |
+
- Tokenizers 0.14.1
|
trainer_state.json
CHANGED
@@ -153,22 +153,22 @@
|
|
153 |
"step": 1000,
|
154 |
"total_flos": 6.687707580928205e+16,
|
155 |
"train_loss": 0.0,
|
156 |
-
"train_runtime":
|
157 |
-
"train_samples_per_second":
|
158 |
-
"train_steps_per_second":
|
159 |
},
|
160 |
{
|
161 |
"epoch": 1.96,
|
162 |
-
"eval_loss": 1.
|
163 |
-
"eval_runtime":
|
164 |
-
"eval_samples_per_second":
|
165 |
-
"eval_steps_per_second":
|
166 |
"step": 1000
|
167 |
}
|
168 |
],
|
169 |
"logging_steps": 100,
|
170 |
-
"max_steps":
|
171 |
-
"num_train_epochs":
|
172 |
"save_steps": 100,
|
173 |
"total_flos": 6.687707580928205e+16,
|
174 |
"trial_name": null,
|
|
|
153 |
"step": 1000,
|
154 |
"total_flos": 6.687707580928205e+16,
|
155 |
"train_loss": 0.0,
|
156 |
+
"train_runtime": 7.1169,
|
157 |
+
"train_samples_per_second": 73347.754,
|
158 |
+
"train_steps_per_second": 71.379
|
159 |
},
|
160 |
{
|
161 |
"epoch": 1.96,
|
162 |
+
"eval_loss": 1.2041162252426147,
|
163 |
+
"eval_runtime": 16.97,
|
164 |
+
"eval_samples_per_second": 705.304,
|
165 |
+
"eval_steps_per_second": 2.77,
|
166 |
"step": 1000
|
167 |
}
|
168 |
],
|
169 |
"logging_steps": 100,
|
170 |
+
"max_steps": 508,
|
171 |
+
"num_train_epochs": 4,
|
172 |
"save_steps": 100,
|
173 |
"total_flos": 6.687707580928205e+16,
|
174 |
"trial_name": null,
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f8ad8e1cec322d3bb15dd021fe3953da579ea9c171547e83361375356a9013b
|
3 |
size 4664
|