File size: 1,759 Bytes
72949f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: distilbert-finetuned-uncased-squad_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-finetuned-uncased-squad_v2

This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3930

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.6437        | 0.39  | 100  | 2.1780          |
| 2.1596        | 0.78  | 200  | 1.6557          |
| 1.8138        | 1.18  | 300  | 1.5683          |
| 1.6987        | 1.57  | 400  | 1.5076          |
| 1.6586        | 1.96  | 500  | 1.5350          |
| 1.5957        | 1.18  | 600  | 1.4431          |
| 1.5825        | 1.37  | 700  | 1.4955          |
| 1.5523        | 1.57  | 800  | 1.4444          |
| 1.5346        | 1.76  | 900  | 1.3930          |
| 1.5098        | 1.96  | 1000 | 1.4285          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1