File size: 5,338 Bytes
72949f0 c799181 889dcea c799181 efbd6cd 4ef9a81 ce837db 72949f0 c799181 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: distilbert-finetuned-uncased-squad_v2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: SQuAD v2
type: squad_v2
split: validation
metrics:
- type: exact
value: 100.0
name: Exact
- type: f1
value: 100.0
name: F1
- type: total
value: 2
name: Total
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-finetuned-uncased-squad_v2
This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2617
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.6437 | 0.39 | 100 | 2.1780 |
| 2.1596 | 0.78 | 200 | 1.6557 |
| 1.8138 | 1.18 | 300 | 1.5683 |
| 1.6987 | 1.57 | 400 | 1.5076 |
| 1.6586 | 1.96 | 500 | 1.5350 |
| 1.5957 | 1.18 | 600 | 1.4431 |
| 1.5825 | 1.37 | 700 | 1.4955 |
| 1.5523 | 1.57 | 800 | 1.4444 |
| 1.5346 | 1.76 | 900 | 1.3930 |
| 1.5098 | 1.96 | 1000 | 1.4285 |
| 1.4632 | 2.16 | 1100 | 1.3630 |
| 1.4468 | 2.35 | 1200 | 1.3710 |
| 1.4343 | 2.55 | 1300 | 1.3422 |
| 1.4225 | 2.75 | 1400 | 1.3971 |
| 1.408 | 2.94 | 1500 | 1.4355 |
| 1.3609 | 3.14 | 1600 | 1.3332 |
| 1.3398 | 3.33 | 1700 | 1.3792 |
| 1.3224 | 3.53 | 1800 | 1.4172 |
| 1.3152 | 3.73 | 1900 | 1.3956 |
| 1.3141 | 3.92 | 2000 | 1.3748 |
| 1.3085 | 2.06 | 2100 | 1.3949 |
| 1.3325 | 2.16 | 2200 | 1.4870 |
| 1.3162 | 2.26 | 2300 | 1.4565 |
| 1.2936 | 2.35 | 2400 | 1.4496 |
| 1.2648 | 2.45 | 2500 | 1.2868 |
| 1.2531 | 2.55 | 2600 | 1.5094 |
| 1.2599 | 2.65 | 2700 | 1.3451 |
| 1.2545 | 2.75 | 2800 | 1.4071 |
| 1.2461 | 2.84 | 2900 | 1.3378 |
| 1.2038 | 2.94 | 3000 | 1.2946 |
| 1.1677 | 3.04 | 3100 | 1.4802 |
| 1.103 | 3.14 | 3200 | 1.3580 |
| 1.1205 | 3.24 | 3300 | 1.3819 |
| 1.095 | 3.33 | 3400 | 1.4336 |
| 1.0896 | 3.43 | 3500 | 1.4963 |
| 1.0856 | 3.53 | 3600 | 1.3384 |
| 1.0652 | 3.63 | 3700 | 1.3583 |
| 1.0859 | 3.73 | 3800 | 1.4140 |
| 1.058 | 3.83 | 3900 | 1.2617 |
| 1.0724 | 3.92 | 4000 | 1.3552 |
| 1.0509 | 4.02 | 4100 | 1.2971 |
| 0.97 | 4.12 | 4200 | 1.3268 |
| 0.95 | 4.22 | 4300 | 1.3754 |
| 0.9337 | 4.32 | 4400 | 1.3687 |
| 0.977 | 4.41 | 4500 | 1.3613 |
| 0.9484 | 4.51 | 4600 | 1.5139 |
| 0.9739 | 4.61 | 4700 | 1.2861 |
| 0.955 | 4.71 | 4800 | 1.3667 |
| 0.9536 | 4.81 | 4900 | 1.3180 |
| 0.9541 | 4.9 | 5000 | 1.4611 |
| 0.9462 | 5.0 | 5100 | 1.4067 |
| 0.8728 | 5.1 | 5200 | 1.3490 |
| 0.8646 | 5.2 | 5300 | 1.4631 |
| 0.8683 | 5.3 | 5400 | 1.4978 |
| 0.8571 | 5.39 | 5500 | 1.5814 |
| 0.8475 | 5.49 | 5600 | 1.5535 |
| 0.8653 | 5.59 | 5700 | 1.4938 |
| 0.8664 | 5.69 | 5800 | 1.4141 |
| 0.889 | 5.79 | 5900 | 1.4487 |
| 0.8601 | 5.88 | 6000 | 1.4722 |
| 0.8645 | 5.98 | 6100 | 1.5843 |
| 0.785 | 6.08 | 6200 | 1.6028 |
| 0.7711 | 6.18 | 6300 | 1.6271 |
| 0.8056 | 6.28 | 6400 | 1.5399 |
| 0.8087 | 6.37 | 6500 | 1.4927 |
| 0.7859 | 6.47 | 6600 | 1.4677 |
| 0.7896 | 6.57 | 6700 | 1.4780 |
| 0.7971 | 6.67 | 6800 | 1.5110 |
| 0.7952 | 6.77 | 6900 | 1.5459 |
| 0.7971 | 6.87 | 7000 | 1.5282 |
| 0.7908 | 6.96 | 7100 | 1.4799 |
| 0.7456 | 7.06 | 7200 | 1.6487 |
| 0.7236 | 7.16 | 7300 | 1.6543 |
| 0.7484 | 7.26 | 7400 | 1.6202 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|