jonathanagustin commited on
Commit
7df7b96
1 Parent(s): 425c5f8

Model save

Browse files
Files changed (4) hide show
  1. README.md +128 -277
  2. metrics.json +5 -5
  3. trainer_state.json +774 -18
  4. training_args.bin +1 -1
README.md CHANGED
@@ -1,281 +1,132 @@
1
  ---
2
- language: en
3
- license: mit
4
- model_details: "\n ## Abstract\n This model, 'distilbert-finetuned-uncased',\
5
- \ is a question-answering chatbot trained on the SQuAD dataset, demonstrating competency\
6
- \ in building conversational AI using recent advances in natural language processing.\
7
- \ It utilizes a BERT model fine-tuned for extractive question answering.\n\n \
8
- \ ## Data Collection and Preprocessing\n The model was trained on the\
9
- \ Stanford Question Answering Dataset (SQuAD), which contains over 100,000 question-answer\
10
- \ pairs based on Wikipedia articles. The data preprocessing involved tokenizing\
11
- \ context paragraphs and questions, truncating sequences to fit BERT's max length,\
12
- \ and adding special tokens to mark question and paragraph segments.\n\n \
13
- \ ## Model Architecture and Training\n The architecture is based on the BERT\
14
- \ transformer model, which was pretrained on large unlabeled text corpora. For this\
15
- \ project, the BERT base model was fine-tuned on SQuAD for extractive question answering,\
16
- \ with additional output layers for predicting the start and end indices of the\
17
- \ answer span.\n\n ## SQuAD 2.0 Dataset\n SQuAD 2.0 combines the existing\
18
- \ SQuAD data with over 50,000 unanswerable questions written adversarially by crowdworkers\
19
- \ to look similar to answerable ones. This version of the dataset challenges models\
20
- \ to not only produce answers when possible but also determine when no answer is\
21
- \ supported by the paragraph and abstain from answering.\n "
22
- intended_use: "\n - Answering questions from the squad_v2 dataset.\n \
23
- \ - Developing question-answering systems within the scope of the aai520-project.\n\
24
- \ - Research and experimentation in the NLP question-answering domain.\n\
25
- \ "
26
- limitations_and_bias: "\n The model inherits limitations and biases from the\
27
- \ 'distilbert-base-uncased' model, as it was trained on the same foundational data.\n\
28
- \ It may underperform on questions that are ambiguous or too far outside\
29
- \ the scope of the topics covered in the squad_v2 dataset.\n Additionally,\
30
- \ the model may reflect societal biases present in its training data.\n "
31
- ethical_considerations: "\n This model should not be used for making critical\
32
- \ decisions without human oversight,\n as it can generate incorrect or biased\
33
- \ answers, especially for topics not covered in the training data.\n Users\
34
- \ should also consider the ethical implications of using AI in decision-making processes\
35
- \ and the potential for perpetuating biases.\n "
36
- evaluation: "\n The model was evaluated on the squad_v2 dataset using various\
37
- \ metrics. These metrics, along with their corresponding scores,\n are detailed\
38
- \ in the 'eval_results' section. The evaluation process ensured a comprehensive\
39
- \ assessment of the model's performance\n in question-answering scenarios.\n\
40
- \ "
41
- training: "\n The model was trained over 10 epochs with a learning rate of\
42
- \ 2e-05, using a batch size of 128.\n The training utilized a cross-entropy\
43
- \ loss function and the AdamW optimizer, with gradient accumulation over 4 steps.\n\
44
- \ "
45
- tips_and_tricks: "\n For optimal performance, questions should be clear, concise,\
46
- \ and grammatically correct.\n The model performs best on questions related\
47
- \ to topics covered in the squad_v2 dataset.\n It is advisable to pre-process\
48
- \ text for consistency in encoding and punctuation, and to manage expectations for\
49
- \ questions on topics outside the training data.\n "
50
  model-index:
51
- - name: distilbert-finetuned-uncased
52
- results:
53
- - task:
54
- type: question-answering
55
- dataset:
56
- name: SQuAD v2
57
- type: squad_v2
58
- metrics:
59
- - type: Exact
60
- value: 100.0
61
- - type: F1
62
- value: 100.0
63
- - type: Total
64
- value: 2
65
- - type: Hasans Exact
66
- value: 100.0
67
- - type: Hasans F1
68
- value: 100.0
69
- - type: Hasans Total
70
- value: 2
71
- - type: Best Exact
72
- value: 100.0
73
- - type: Best Exact Thresh
74
- value: 0.967875599861145
75
- - type: Best F1
76
- value: 100.0
77
- - type: Best F1 Thresh
78
- value: 0.967875599861145
79
- - type: Total Time In Seconds
80
- value: 0.03484977200002959
81
- - type: Samples Per Second
82
- value: 57.389184640814925
83
- - type: Latency In Seconds
84
- value: 0.017424886000014794
85
  ---
86
 
87
- # Model Card for Model ID
88
-
89
- <!-- Provide a quick summary of what the model is/does. -->
90
-
91
-
92
-
93
- ## Model Details
94
-
95
- ### Model Description
96
-
97
- <!-- Provide a longer summary of what this model is. -->
98
-
99
-
100
-
101
- - **Developed by:** [More Information Needed]
102
- - **Shared by [optional]:** [More Information Needed]
103
- - **Model type:** [More Information Needed]
104
- - **Language(s) (NLP):** en
105
- - **License:** mit
106
- - **Finetuned from model [optional]:** [More Information Needed]
107
-
108
- ### Model Sources [optional]
109
-
110
- <!-- Provide the basic links for the model. -->
111
-
112
- - **Repository:** [More Information Needed]
113
- - **Paper [optional]:** [More Information Needed]
114
- - **Demo [optional]:** [More Information Needed]
115
-
116
- ## Uses
117
-
118
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
119
-
120
- ### Direct Use
121
-
122
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Downstream Use [optional]
127
-
128
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
129
-
130
- [More Information Needed]
131
-
132
- ### Out-of-Scope Use
133
-
134
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
135
-
136
- [More Information Needed]
137
-
138
- ## Bias, Risks, and Limitations
139
-
140
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
141
-
142
- [More Information Needed]
143
-
144
- ### Recommendations
145
-
146
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
147
-
148
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
149
-
150
- ## How to Get Started with the Model
151
-
152
- Use the code below to get started with the model.
153
-
154
- [More Information Needed]
155
-
156
- ## Training Details
157
-
158
- ### Training Data
159
-
160
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
161
-
162
- [More Information Needed]
163
-
164
- ### Training Procedure
165
-
166
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
167
-
168
- #### Preprocessing [optional]
169
-
170
- [More Information Needed]
171
-
172
-
173
- #### Training Hyperparameters
174
-
175
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
176
-
177
- #### Speeds, Sizes, Times [optional]
178
-
179
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
180
-
181
- [More Information Needed]
182
-
183
- ## Evaluation
184
-
185
- <!-- This section describes the evaluation protocols and provides the results. -->
186
-
187
- ### Testing Data, Factors & Metrics
188
-
189
- #### Testing Data
190
-
191
- <!-- This should link to a Data Card if possible. -->
192
-
193
- [More Information Needed]
194
-
195
- #### Factors
196
-
197
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
198
-
199
- [More Information Needed]
200
-
201
- #### Metrics
202
-
203
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
204
-
205
- [More Information Needed]
206
-
207
- ### Results
208
-
209
- [More Information Needed]
210
-
211
- #### Summary
212
-
213
-
214
-
215
- ## Model Examination [optional]
216
-
217
- <!-- Relevant interpretability work for the model goes here -->
218
-
219
- [More Information Needed]
220
-
221
- ## Environmental Impact
222
-
223
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
224
-
225
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
226
-
227
- - **Hardware Type:** [More Information Needed]
228
- - **Hours used:** [More Information Needed]
229
- - **Cloud Provider:** [More Information Needed]
230
- - **Compute Region:** [More Information Needed]
231
- - **Carbon Emitted:** [More Information Needed]
232
-
233
- ## Technical Specifications [optional]
234
-
235
- ### Model Architecture and Objective
236
-
237
- [More Information Needed]
238
-
239
- ### Compute Infrastructure
240
-
241
- [More Information Needed]
242
-
243
- #### Hardware
244
-
245
- [More Information Needed]
246
-
247
- #### Software
248
-
249
- [More Information Needed]
250
-
251
- ## Citation [optional]
252
-
253
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
254
-
255
- **BibTeX:**
256
-
257
- [More Information Needed]
258
-
259
- **APA:**
260
-
261
- [More Information Needed]
262
-
263
- ## Glossary [optional]
264
-
265
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
266
-
267
- [More Information Needed]
268
-
269
- ## More Information [optional]
270
-
271
- [More Information Needed]
272
-
273
- ## Model Card Authors [optional]
274
-
275
- [More Information Needed]
276
-
277
- ## Model Card Contact
278
-
279
- [More Information Needed]
280
-
281
-
 
1
  ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - squad_v2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  model-index:
7
+ - name: distilbert-finetuned-uncased-squad_v2
8
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # distilbert-finetuned-uncased-squad_v2
15
+
16
+ This model was trained from scratch on the squad_v2 dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.2617
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 2e-05
38
+ - train_batch_size: 64
39
+ - eval_batch_size: 64
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 4
42
+ - total_train_batch_size: 256
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 10
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 3.6437 | 0.39 | 100 | 2.1780 |
52
+ | 2.1596 | 0.78 | 200 | 1.6557 |
53
+ | 1.8138 | 1.18 | 300 | 1.5683 |
54
+ | 1.6987 | 1.57 | 400 | 1.5076 |
55
+ | 1.6586 | 1.96 | 500 | 1.5350 |
56
+ | 1.5957 | 1.18 | 600 | 1.4431 |
57
+ | 1.5825 | 1.37 | 700 | 1.4955 |
58
+ | 1.5523 | 1.57 | 800 | 1.4444 |
59
+ | 1.5346 | 1.76 | 900 | 1.3930 |
60
+ | 1.5098 | 1.96 | 1000 | 1.4285 |
61
+ | 1.4632 | 2.16 | 1100 | 1.3630 |
62
+ | 1.4468 | 2.35 | 1200 | 1.3710 |
63
+ | 1.4343 | 2.55 | 1300 | 1.3422 |
64
+ | 1.4225 | 2.75 | 1400 | 1.3971 |
65
+ | 1.408 | 2.94 | 1500 | 1.4355 |
66
+ | 1.3609 | 3.14 | 1600 | 1.3332 |
67
+ | 1.3398 | 3.33 | 1700 | 1.3792 |
68
+ | 1.3224 | 3.53 | 1800 | 1.4172 |
69
+ | 1.3152 | 3.73 | 1900 | 1.3956 |
70
+ | 1.3141 | 3.92 | 2000 | 1.3748 |
71
+ | 1.3085 | 2.06 | 2100 | 1.3949 |
72
+ | 1.3325 | 2.16 | 2200 | 1.4870 |
73
+ | 1.3162 | 2.26 | 2300 | 1.4565 |
74
+ | 1.2936 | 2.35 | 2400 | 1.4496 |
75
+ | 1.2648 | 2.45 | 2500 | 1.2868 |
76
+ | 1.2531 | 2.55 | 2600 | 1.5094 |
77
+ | 1.2599 | 2.65 | 2700 | 1.3451 |
78
+ | 1.2545 | 2.75 | 2800 | 1.4071 |
79
+ | 1.2461 | 2.84 | 2900 | 1.3378 |
80
+ | 1.2038 | 2.94 | 3000 | 1.2946 |
81
+ | 1.1677 | 3.04 | 3100 | 1.4802 |
82
+ | 1.103 | 3.14 | 3200 | 1.3580 |
83
+ | 1.1205 | 3.24 | 3300 | 1.3819 |
84
+ | 1.095 | 3.33 | 3400 | 1.4336 |
85
+ | 1.0896 | 3.43 | 3500 | 1.4963 |
86
+ | 1.0856 | 3.53 | 3600 | 1.3384 |
87
+ | 1.0652 | 3.63 | 3700 | 1.3583 |
88
+ | 1.0859 | 3.73 | 3800 | 1.4140 |
89
+ | 1.058 | 3.83 | 3900 | 1.2617 |
90
+ | 1.0724 | 3.92 | 4000 | 1.3552 |
91
+ | 1.0509 | 4.02 | 4100 | 1.2971 |
92
+ | 0.97 | 4.12 | 4200 | 1.3268 |
93
+ | 0.95 | 4.22 | 4300 | 1.3754 |
94
+ | 0.9337 | 4.32 | 4400 | 1.3687 |
95
+ | 0.977 | 4.41 | 4500 | 1.3613 |
96
+ | 0.9484 | 4.51 | 4600 | 1.5139 |
97
+ | 0.9739 | 4.61 | 4700 | 1.2861 |
98
+ | 0.955 | 4.71 | 4800 | 1.3667 |
99
+ | 0.9536 | 4.81 | 4900 | 1.3180 |
100
+ | 0.9541 | 4.9 | 5000 | 1.4611 |
101
+ | 0.9462 | 5.0 | 5100 | 1.4067 |
102
+ | 0.8728 | 5.1 | 5200 | 1.3490 |
103
+ | 0.8646 | 5.2 | 5300 | 1.4631 |
104
+ | 0.8683 | 5.3 | 5400 | 1.4978 |
105
+ | 0.8571 | 5.39 | 5500 | 1.5814 |
106
+ | 0.8475 | 5.49 | 5600 | 1.5535 |
107
+ | 0.8653 | 5.59 | 5700 | 1.4938 |
108
+ | 0.8664 | 5.69 | 5800 | 1.4141 |
109
+ | 0.889 | 5.79 | 5900 | 1.4487 |
110
+ | 0.8601 | 5.88 | 6000 | 1.4722 |
111
+ | 0.8645 | 5.98 | 6100 | 1.5843 |
112
+ | 0.785 | 6.08 | 6200 | 1.6028 |
113
+ | 0.7711 | 6.18 | 6300 | 1.6271 |
114
+ | 0.8056 | 6.28 | 6400 | 1.5399 |
115
+ | 0.8087 | 6.37 | 6500 | 1.4927 |
116
+ | 0.7859 | 6.47 | 6600 | 1.4677 |
117
+ | 0.7896 | 6.57 | 6700 | 1.4780 |
118
+ | 0.7971 | 6.67 | 6800 | 1.5110 |
119
+ | 0.7952 | 6.77 | 6900 | 1.5459 |
120
+ | 0.7971 | 6.87 | 7000 | 1.5282 |
121
+ | 0.7908 | 6.96 | 7100 | 1.4799 |
122
+ | 0.7456 | 7.06 | 7200 | 1.6487 |
123
+ | 0.7236 | 7.16 | 7300 | 1.6543 |
124
+ | 0.7484 | 7.26 | 7400 | 1.6202 |
125
+
126
+
127
+ ### Framework versions
128
+
129
+ - Transformers 4.34.1
130
+ - Pytorch 2.1.0+cu118
131
+ - Datasets 2.14.6
132
+ - Tokenizers 0.14.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
metrics.json CHANGED
@@ -6,10 +6,10 @@
6
  "HasAns_f1": 100.0,
7
  "HasAns_total": 2,
8
  "best_exact": 100.0,
9
- "best_exact_thresh": 0.7474104762077332,
10
  "best_f1": 100.0,
11
- "best_f1_thresh": 0.7474104762077332,
12
- "total_time_in_seconds": 0.022410528003092622,
13
- "samples_per_second": 89.24376970163321,
14
- "latency_in_seconds": 0.011205264001546311
15
  }
 
6
  "HasAns_f1": 100.0,
7
  "HasAns_total": 2,
8
  "best_exact": 100.0,
9
+ "best_exact_thresh": 0.967875599861145,
10
  "best_f1": 100.0,
11
+ "best_f1_thresh": 0.967875599861145,
12
+ "total_time_in_seconds": 0.03484977200002959,
13
+ "samples_per_second": 57.389184640814925,
14
+ "latency_in_seconds": 0.017424886000014794
15
  }
trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
- "best_metric": 1.3331981897354126,
3
- "best_model_checkpoint": "/content/drive/My Drive/Colab Notebooks/aai520-project/checkpoints/distilbert-finetuned-uncased/checkpoint-1600",
4
- "epoch": 3.9215686274509802,
5
  "eval_steps": 100,
6
- "global_step": 2000,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -288,29 +288,785 @@
288
  "eval_steps_per_second": 22.246,
289
  "step": 2000
290
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
291
  {
292
  "epoch": 3.92,
293
- "step": 2000,
294
- "total_flos": 8.35881951136727e+16,
295
- "train_loss": 0.0,
296
- "train_runtime": 0.4632,
297
- "train_samples_per_second": 1126881.683,
298
- "train_steps_per_second": 2201.902
299
  },
300
  {
301
  "epoch": 3.92,
302
- "eval_loss": 1.3331990242004395,
303
- "eval_runtime": 8.4546,
304
- "eval_samples_per_second": 1415.675,
305
- "eval_steps_per_second": 11.118,
306
- "step": 2000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
307
  }
308
  ],
309
  "logging_steps": 100,
310
- "max_steps": 1020,
311
- "num_train_epochs": 4,
312
  "save_steps": 100,
313
- "total_flos": 8.35881951136727e+16,
314
  "trial_name": null,
315
  "trial_params": null
316
  }
 
1
  {
2
+ "best_metric": 1.2616792917251587,
3
+ "best_model_checkpoint": "/content/drive/My Drive/Colab Notebooks/aai520-project/checkpoints/distilbert-finetuned-uncased/checkpoint-3900",
4
+ "epoch": 7.257416033341506,
5
  "eval_steps": 100,
6
+ "global_step": 7400,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
288
  "eval_steps_per_second": 22.246,
289
  "step": 2000
290
  },
291
+ {
292
+ "epoch": 2.06,
293
+ "learning_rate": 1.587831207065751e-05,
294
+ "loss": 1.3085,
295
+ "step": 2100
296
+ },
297
+ {
298
+ "epoch": 2.06,
299
+ "eval_loss": 1.3948506116867065,
300
+ "eval_runtime": 61.1737,
301
+ "eval_samples_per_second": 195.656,
302
+ "eval_steps_per_second": 6.13,
303
+ "step": 2100
304
+ },
305
+ {
306
+ "epoch": 2.16,
307
+ "learning_rate": 1.5682041216879295e-05,
308
+ "loss": 1.3325,
309
+ "step": 2200
310
+ },
311
+ {
312
+ "epoch": 2.16,
313
+ "eval_loss": 1.4869881868362427,
314
+ "eval_runtime": 61.232,
315
+ "eval_samples_per_second": 195.47,
316
+ "eval_steps_per_second": 6.124,
317
+ "step": 2200
318
+ },
319
+ {
320
+ "epoch": 2.26,
321
+ "learning_rate": 1.548577036310108e-05,
322
+ "loss": 1.3162,
323
+ "step": 2300
324
+ },
325
+ {
326
+ "epoch": 2.26,
327
+ "eval_loss": 1.4565335512161255,
328
+ "eval_runtime": 61.2209,
329
+ "eval_samples_per_second": 195.505,
330
+ "eval_steps_per_second": 6.125,
331
+ "step": 2300
332
+ },
333
+ {
334
+ "epoch": 2.35,
335
+ "learning_rate": 1.5289499509322867e-05,
336
+ "loss": 1.2936,
337
+ "step": 2400
338
+ },
339
+ {
340
+ "epoch": 2.35,
341
+ "eval_loss": 1.449613332748413,
342
+ "eval_runtime": 61.2023,
343
+ "eval_samples_per_second": 195.565,
344
+ "eval_steps_per_second": 6.127,
345
+ "step": 2400
346
+ },
347
+ {
348
+ "epoch": 2.45,
349
+ "learning_rate": 1.5093228655544654e-05,
350
+ "loss": 1.2648,
351
+ "step": 2500
352
+ },
353
+ {
354
+ "epoch": 2.45,
355
+ "eval_loss": 1.2867687940597534,
356
+ "eval_runtime": 61.2092,
357
+ "eval_samples_per_second": 195.542,
358
+ "eval_steps_per_second": 6.127,
359
+ "step": 2500
360
+ },
361
+ {
362
+ "epoch": 2.55,
363
+ "learning_rate": 1.4896957801766438e-05,
364
+ "loss": 1.2531,
365
+ "step": 2600
366
+ },
367
+ {
368
+ "epoch": 2.55,
369
+ "eval_loss": 1.5093618631362915,
370
+ "eval_runtime": 60.9769,
371
+ "eval_samples_per_second": 196.287,
372
+ "eval_steps_per_second": 6.15,
373
+ "step": 2600
374
+ },
375
+ {
376
+ "epoch": 2.65,
377
+ "learning_rate": 1.4700686947988226e-05,
378
+ "loss": 1.2599,
379
+ "step": 2700
380
+ },
381
+ {
382
+ "epoch": 2.65,
383
+ "eval_loss": 1.3450872898101807,
384
+ "eval_runtime": 61.0675,
385
+ "eval_samples_per_second": 195.996,
386
+ "eval_steps_per_second": 6.141,
387
+ "step": 2700
388
+ },
389
+ {
390
+ "epoch": 2.75,
391
+ "learning_rate": 1.4504416094210011e-05,
392
+ "loss": 1.2545,
393
+ "step": 2800
394
+ },
395
+ {
396
+ "epoch": 2.75,
397
+ "eval_loss": 1.407065749168396,
398
+ "eval_runtime": 61.1333,
399
+ "eval_samples_per_second": 195.785,
400
+ "eval_steps_per_second": 6.134,
401
+ "step": 2800
402
+ },
403
+ {
404
+ "epoch": 2.84,
405
+ "learning_rate": 1.4308145240431797e-05,
406
+ "loss": 1.2461,
407
+ "step": 2900
408
+ },
409
+ {
410
+ "epoch": 2.84,
411
+ "eval_loss": 1.3378450870513916,
412
+ "eval_runtime": 61.1961,
413
+ "eval_samples_per_second": 195.584,
414
+ "eval_steps_per_second": 6.128,
415
+ "step": 2900
416
+ },
417
+ {
418
+ "epoch": 2.94,
419
+ "learning_rate": 1.4111874386653583e-05,
420
+ "loss": 1.2038,
421
+ "step": 3000
422
+ },
423
+ {
424
+ "epoch": 2.94,
425
+ "eval_loss": 1.294646143913269,
426
+ "eval_runtime": 61.1636,
427
+ "eval_samples_per_second": 195.688,
428
+ "eval_steps_per_second": 6.131,
429
+ "step": 3000
430
+ },
431
+ {
432
+ "epoch": 3.04,
433
+ "learning_rate": 1.391560353287537e-05,
434
+ "loss": 1.1677,
435
+ "step": 3100
436
+ },
437
+ {
438
+ "epoch": 3.04,
439
+ "eval_loss": 1.480231761932373,
440
+ "eval_runtime": 61.0678,
441
+ "eval_samples_per_second": 195.995,
442
+ "eval_steps_per_second": 6.141,
443
+ "step": 3100
444
+ },
445
+ {
446
+ "epoch": 3.14,
447
+ "learning_rate": 1.3719332679097154e-05,
448
+ "loss": 1.103,
449
+ "step": 3200
450
+ },
451
+ {
452
+ "epoch": 3.14,
453
+ "eval_loss": 1.3580176830291748,
454
+ "eval_runtime": 61.18,
455
+ "eval_samples_per_second": 195.636,
456
+ "eval_steps_per_second": 6.129,
457
+ "step": 3200
458
+ },
459
+ {
460
+ "epoch": 3.24,
461
+ "learning_rate": 1.3523061825318942e-05,
462
+ "loss": 1.1205,
463
+ "step": 3300
464
+ },
465
+ {
466
+ "epoch": 3.24,
467
+ "eval_loss": 1.3818870782852173,
468
+ "eval_runtime": 60.9958,
469
+ "eval_samples_per_second": 196.227,
470
+ "eval_steps_per_second": 6.148,
471
+ "step": 3300
472
+ },
473
+ {
474
+ "epoch": 3.33,
475
+ "learning_rate": 1.3326790971540726e-05,
476
+ "loss": 1.095,
477
+ "step": 3400
478
+ },
479
+ {
480
+ "epoch": 3.33,
481
+ "eval_loss": 1.4335613250732422,
482
+ "eval_runtime": 61.1187,
483
+ "eval_samples_per_second": 195.832,
484
+ "eval_steps_per_second": 6.136,
485
+ "step": 3400
486
+ },
487
+ {
488
+ "epoch": 3.43,
489
+ "learning_rate": 1.3130520117762513e-05,
490
+ "loss": 1.0896,
491
+ "step": 3500
492
+ },
493
+ {
494
+ "epoch": 3.43,
495
+ "eval_loss": 1.4962539672851562,
496
+ "eval_runtime": 61.0543,
497
+ "eval_samples_per_second": 196.039,
498
+ "eval_steps_per_second": 6.142,
499
+ "step": 3500
500
+ },
501
+ {
502
+ "epoch": 3.53,
503
+ "learning_rate": 1.2934249263984299e-05,
504
+ "loss": 1.0856,
505
+ "step": 3600
506
+ },
507
+ {
508
+ "epoch": 3.53,
509
+ "eval_loss": 1.3384228944778442,
510
+ "eval_runtime": 61.1027,
511
+ "eval_samples_per_second": 195.883,
512
+ "eval_steps_per_second": 6.137,
513
+ "step": 3600
514
+ },
515
+ {
516
+ "epoch": 3.63,
517
+ "learning_rate": 1.2737978410206085e-05,
518
+ "loss": 1.0652,
519
+ "step": 3700
520
+ },
521
+ {
522
+ "epoch": 3.63,
523
+ "eval_loss": 1.3583240509033203,
524
+ "eval_runtime": 61.0826,
525
+ "eval_samples_per_second": 195.948,
526
+ "eval_steps_per_second": 6.139,
527
+ "step": 3700
528
+ },
529
+ {
530
+ "epoch": 3.73,
531
+ "learning_rate": 1.254170755642787e-05,
532
+ "loss": 1.0859,
533
+ "step": 3800
534
+ },
535
+ {
536
+ "epoch": 3.73,
537
+ "eval_loss": 1.414008378982544,
538
+ "eval_runtime": 61.0681,
539
+ "eval_samples_per_second": 195.994,
540
+ "eval_steps_per_second": 6.141,
541
+ "step": 3800
542
+ },
543
+ {
544
+ "epoch": 3.83,
545
+ "learning_rate": 1.2345436702649658e-05,
546
+ "loss": 1.058,
547
+ "step": 3900
548
+ },
549
+ {
550
+ "epoch": 3.83,
551
+ "eval_loss": 1.2616792917251587,
552
+ "eval_runtime": 61.1143,
553
+ "eval_samples_per_second": 195.846,
554
+ "eval_steps_per_second": 6.136,
555
+ "step": 3900
556
+ },
557
  {
558
  "epoch": 3.92,
559
+ "learning_rate": 1.2149165848871442e-05,
560
+ "loss": 1.0724,
561
+ "step": 4000
 
 
 
562
  },
563
  {
564
  "epoch": 3.92,
565
+ "eval_loss": 1.3551816940307617,
566
+ "eval_runtime": 61.0974,
567
+ "eval_samples_per_second": 195.9,
568
+ "eval_steps_per_second": 6.138,
569
+ "step": 4000
570
+ },
571
+ {
572
+ "epoch": 4.02,
573
+ "learning_rate": 1.1954857703631012e-05,
574
+ "loss": 1.0509,
575
+ "step": 4100
576
+ },
577
+ {
578
+ "epoch": 4.02,
579
+ "eval_loss": 1.2970877885818481,
580
+ "eval_runtime": 61.0416,
581
+ "eval_samples_per_second": 196.079,
582
+ "eval_steps_per_second": 6.143,
583
+ "step": 4100
584
+ },
585
+ {
586
+ "epoch": 4.12,
587
+ "learning_rate": 1.1758586849852797e-05,
588
+ "loss": 0.97,
589
+ "step": 4200
590
+ },
591
+ {
592
+ "epoch": 4.12,
593
+ "eval_loss": 1.3268026113510132,
594
+ "eval_runtime": 61.0438,
595
+ "eval_samples_per_second": 196.072,
596
+ "eval_steps_per_second": 6.143,
597
+ "step": 4200
598
+ },
599
+ {
600
+ "epoch": 4.22,
601
+ "learning_rate": 1.1562315996074585e-05,
602
+ "loss": 0.95,
603
+ "step": 4300
604
+ },
605
+ {
606
+ "epoch": 4.22,
607
+ "eval_loss": 1.3753584623336792,
608
+ "eval_runtime": 61.1527,
609
+ "eval_samples_per_second": 195.723,
610
+ "eval_steps_per_second": 6.132,
611
+ "step": 4300
612
+ },
613
+ {
614
+ "epoch": 4.32,
615
+ "learning_rate": 1.1366045142296369e-05,
616
+ "loss": 0.9337,
617
+ "step": 4400
618
+ },
619
+ {
620
+ "epoch": 4.32,
621
+ "eval_loss": 1.3687292337417603,
622
+ "eval_runtime": 61.1591,
623
+ "eval_samples_per_second": 195.703,
624
+ "eval_steps_per_second": 6.132,
625
+ "step": 4400
626
+ },
627
+ {
628
+ "epoch": 4.41,
629
+ "learning_rate": 1.1169774288518156e-05,
630
+ "loss": 0.977,
631
+ "step": 4500
632
+ },
633
+ {
634
+ "epoch": 4.41,
635
+ "eval_loss": 1.3613475561141968,
636
+ "eval_runtime": 61.1865,
637
+ "eval_samples_per_second": 195.615,
638
+ "eval_steps_per_second": 6.129,
639
+ "step": 4500
640
+ },
641
+ {
642
+ "epoch": 4.51,
643
+ "learning_rate": 1.0973503434739942e-05,
644
+ "loss": 0.9484,
645
+ "step": 4600
646
+ },
647
+ {
648
+ "epoch": 4.51,
649
+ "eval_loss": 1.513939380645752,
650
+ "eval_runtime": 61.2246,
651
+ "eval_samples_per_second": 195.493,
652
+ "eval_steps_per_second": 6.125,
653
+ "step": 4600
654
+ },
655
+ {
656
+ "epoch": 4.61,
657
+ "learning_rate": 1.0777232580961728e-05,
658
+ "loss": 0.9739,
659
+ "step": 4700
660
+ },
661
+ {
662
+ "epoch": 4.61,
663
+ "eval_loss": 1.2861210107803345,
664
+ "eval_runtime": 61.1721,
665
+ "eval_samples_per_second": 195.661,
666
+ "eval_steps_per_second": 6.13,
667
+ "step": 4700
668
+ },
669
+ {
670
+ "epoch": 4.71,
671
+ "learning_rate": 1.0580961727183514e-05,
672
+ "loss": 0.955,
673
+ "step": 4800
674
+ },
675
+ {
676
+ "epoch": 4.71,
677
+ "eval_loss": 1.3666507005691528,
678
+ "eval_runtime": 61.1291,
679
+ "eval_samples_per_second": 195.799,
680
+ "eval_steps_per_second": 6.135,
681
+ "step": 4800
682
+ },
683
+ {
684
+ "epoch": 4.81,
685
+ "learning_rate": 1.0384690873405301e-05,
686
+ "loss": 0.9536,
687
+ "step": 4900
688
+ },
689
+ {
690
+ "epoch": 4.81,
691
+ "eval_loss": 1.3179610967636108,
692
+ "eval_runtime": 61.1785,
693
+ "eval_samples_per_second": 195.641,
694
+ "eval_steps_per_second": 6.13,
695
+ "step": 4900
696
+ },
697
+ {
698
+ "epoch": 4.9,
699
+ "learning_rate": 1.0188420019627085e-05,
700
+ "loss": 0.9541,
701
+ "step": 5000
702
+ },
703
+ {
704
+ "epoch": 4.9,
705
+ "eval_loss": 1.4610702991485596,
706
+ "eval_runtime": 61.0871,
707
+ "eval_samples_per_second": 195.933,
708
+ "eval_steps_per_second": 6.139,
709
+ "step": 5000
710
+ },
711
+ {
712
+ "epoch": 5.0,
713
+ "learning_rate": 9.992149165848873e-06,
714
+ "loss": 0.9462,
715
+ "step": 5100
716
+ },
717
+ {
718
+ "epoch": 5.0,
719
+ "eval_loss": 1.4066604375839233,
720
+ "eval_runtime": 61.1331,
721
+ "eval_samples_per_second": 195.786,
722
+ "eval_steps_per_second": 6.134,
723
+ "step": 5100
724
+ },
725
+ {
726
+ "epoch": 5.1,
727
+ "learning_rate": 9.795878312070658e-06,
728
+ "loss": 0.8728,
729
+ "step": 5200
730
+ },
731
+ {
732
+ "epoch": 5.1,
733
+ "eval_loss": 1.3490474224090576,
734
+ "eval_runtime": 61.0973,
735
+ "eval_samples_per_second": 195.901,
736
+ "eval_steps_per_second": 6.138,
737
+ "step": 5200
738
+ },
739
+ {
740
+ "epoch": 5.2,
741
+ "learning_rate": 9.599607458292444e-06,
742
+ "loss": 0.8646,
743
+ "step": 5300
744
+ },
745
+ {
746
+ "epoch": 5.2,
747
+ "eval_loss": 1.4630706310272217,
748
+ "eval_runtime": 61.0445,
749
+ "eval_samples_per_second": 196.07,
750
+ "eval_steps_per_second": 6.143,
751
+ "step": 5300
752
+ },
753
+ {
754
+ "epoch": 5.3,
755
+ "learning_rate": 9.40333660451423e-06,
756
+ "loss": 0.8683,
757
+ "step": 5400
758
+ },
759
+ {
760
+ "epoch": 5.3,
761
+ "eval_loss": 1.4977810382843018,
762
+ "eval_runtime": 61.0754,
763
+ "eval_samples_per_second": 195.971,
764
+ "eval_steps_per_second": 6.14,
765
+ "step": 5400
766
+ },
767
+ {
768
+ "epoch": 5.39,
769
+ "learning_rate": 9.207065750736016e-06,
770
+ "loss": 0.8571,
771
+ "step": 5500
772
+ },
773
+ {
774
+ "epoch": 5.39,
775
+ "eval_loss": 1.5814284086227417,
776
+ "eval_runtime": 61.0641,
777
+ "eval_samples_per_second": 196.007,
778
+ "eval_steps_per_second": 6.141,
779
+ "step": 5500
780
+ },
781
+ {
782
+ "epoch": 5.49,
783
+ "learning_rate": 9.010794896957803e-06,
784
+ "loss": 0.8475,
785
+ "step": 5600
786
+ },
787
+ {
788
+ "epoch": 5.49,
789
+ "eval_loss": 1.5535171031951904,
790
+ "eval_runtime": 61.1062,
791
+ "eval_samples_per_second": 195.872,
792
+ "eval_steps_per_second": 6.137,
793
+ "step": 5600
794
+ },
795
+ {
796
+ "epoch": 5.59,
797
+ "learning_rate": 8.814524043179589e-06,
798
+ "loss": 0.8653,
799
+ "step": 5700
800
+ },
801
+ {
802
+ "epoch": 5.59,
803
+ "eval_loss": 1.4938398599624634,
804
+ "eval_runtime": 61.1584,
805
+ "eval_samples_per_second": 195.705,
806
+ "eval_steps_per_second": 6.132,
807
+ "step": 5700
808
+ },
809
+ {
810
+ "epoch": 5.69,
811
+ "learning_rate": 8.618253189401375e-06,
812
+ "loss": 0.8664,
813
+ "step": 5800
814
+ },
815
+ {
816
+ "epoch": 5.69,
817
+ "eval_loss": 1.414058804512024,
818
+ "eval_runtime": 61.1886,
819
+ "eval_samples_per_second": 195.608,
820
+ "eval_steps_per_second": 6.129,
821
+ "step": 5800
822
+ },
823
+ {
824
+ "epoch": 5.79,
825
+ "learning_rate": 8.42198233562316e-06,
826
+ "loss": 0.889,
827
+ "step": 5900
828
+ },
829
+ {
830
+ "epoch": 5.79,
831
+ "eval_loss": 1.4486888647079468,
832
+ "eval_runtime": 61.1387,
833
+ "eval_samples_per_second": 195.768,
834
+ "eval_steps_per_second": 6.134,
835
+ "step": 5900
836
+ },
837
+ {
838
+ "epoch": 5.88,
839
+ "learning_rate": 8.225711481844946e-06,
840
+ "loss": 0.8601,
841
+ "step": 6000
842
+ },
843
+ {
844
+ "epoch": 5.88,
845
+ "eval_loss": 1.47215735912323,
846
+ "eval_runtime": 61.1249,
847
+ "eval_samples_per_second": 195.812,
848
+ "eval_steps_per_second": 6.135,
849
+ "step": 6000
850
+ },
851
+ {
852
+ "epoch": 5.98,
853
+ "learning_rate": 8.031403336604516e-06,
854
+ "loss": 0.8645,
855
+ "step": 6100
856
+ },
857
+ {
858
+ "epoch": 5.98,
859
+ "eval_loss": 1.5842609405517578,
860
+ "eval_runtime": 61.0783,
861
+ "eval_samples_per_second": 195.962,
862
+ "eval_steps_per_second": 6.14,
863
+ "step": 6100
864
+ },
865
+ {
866
+ "epoch": 6.08,
867
+ "learning_rate": 7.835132482826301e-06,
868
+ "loss": 0.785,
869
+ "step": 6200
870
+ },
871
+ {
872
+ "epoch": 6.08,
873
+ "eval_loss": 1.6027640104293823,
874
+ "eval_runtime": 61.1172,
875
+ "eval_samples_per_second": 195.837,
876
+ "eval_steps_per_second": 6.136,
877
+ "step": 6200
878
+ },
879
+ {
880
+ "epoch": 6.18,
881
+ "learning_rate": 7.638861629048087e-06,
882
+ "loss": 0.7711,
883
+ "step": 6300
884
+ },
885
+ {
886
+ "epoch": 6.18,
887
+ "eval_loss": 1.6270956993103027,
888
+ "eval_runtime": 61.0612,
889
+ "eval_samples_per_second": 196.016,
890
+ "eval_steps_per_second": 6.141,
891
+ "step": 6300
892
+ },
893
+ {
894
+ "epoch": 6.28,
895
+ "learning_rate": 7.442590775269874e-06,
896
+ "loss": 0.8056,
897
+ "step": 6400
898
+ },
899
+ {
900
+ "epoch": 6.28,
901
+ "eval_loss": 1.5399292707443237,
902
+ "eval_runtime": 61.1714,
903
+ "eval_samples_per_second": 195.663,
904
+ "eval_steps_per_second": 6.13,
905
+ "step": 6400
906
+ },
907
+ {
908
+ "epoch": 6.37,
909
+ "learning_rate": 7.246319921491659e-06,
910
+ "loss": 0.8087,
911
+ "step": 6500
912
+ },
913
+ {
914
+ "epoch": 6.37,
915
+ "eval_loss": 1.492693305015564,
916
+ "eval_runtime": 61.0261,
917
+ "eval_samples_per_second": 196.129,
918
+ "eval_steps_per_second": 6.145,
919
+ "step": 6500
920
+ },
921
+ {
922
+ "epoch": 6.47,
923
+ "learning_rate": 7.0500490677134445e-06,
924
+ "loss": 0.7859,
925
+ "step": 6600
926
+ },
927
+ {
928
+ "epoch": 6.47,
929
+ "eval_loss": 1.4677467346191406,
930
+ "eval_runtime": 61.0807,
931
+ "eval_samples_per_second": 195.954,
932
+ "eval_steps_per_second": 6.139,
933
+ "step": 6600
934
+ },
935
+ {
936
+ "epoch": 6.57,
937
+ "learning_rate": 6.853778213935232e-06,
938
+ "loss": 0.7896,
939
+ "step": 6700
940
+ },
941
+ {
942
+ "epoch": 6.57,
943
+ "eval_loss": 1.4780325889587402,
944
+ "eval_runtime": 61.0973,
945
+ "eval_samples_per_second": 195.901,
946
+ "eval_steps_per_second": 6.138,
947
+ "step": 6700
948
+ },
949
+ {
950
+ "epoch": 6.67,
951
+ "learning_rate": 6.657507360157017e-06,
952
+ "loss": 0.7971,
953
+ "step": 6800
954
+ },
955
+ {
956
+ "epoch": 6.67,
957
+ "eval_loss": 1.5110238790512085,
958
+ "eval_runtime": 61.1306,
959
+ "eval_samples_per_second": 195.794,
960
+ "eval_steps_per_second": 6.134,
961
+ "step": 6800
962
+ },
963
+ {
964
+ "epoch": 6.77,
965
+ "learning_rate": 6.461236506378803e-06,
966
+ "loss": 0.7952,
967
+ "step": 6900
968
+ },
969
+ {
970
+ "epoch": 6.77,
971
+ "eval_loss": 1.545872688293457,
972
+ "eval_runtime": 61.0099,
973
+ "eval_samples_per_second": 196.181,
974
+ "eval_steps_per_second": 6.147,
975
+ "step": 6900
976
+ },
977
+ {
978
+ "epoch": 6.87,
979
+ "learning_rate": 6.26496565260059e-06,
980
+ "loss": 0.7971,
981
+ "step": 7000
982
+ },
983
+ {
984
+ "epoch": 6.87,
985
+ "eval_loss": 1.5281697511672974,
986
+ "eval_runtime": 61.0816,
987
+ "eval_samples_per_second": 195.951,
988
+ "eval_steps_per_second": 6.139,
989
+ "step": 7000
990
+ },
991
+ {
992
+ "epoch": 6.96,
993
+ "learning_rate": 6.068694798822376e-06,
994
+ "loss": 0.7908,
995
+ "step": 7100
996
+ },
997
+ {
998
+ "epoch": 6.96,
999
+ "eval_loss": 1.4799116849899292,
1000
+ "eval_runtime": 61.1305,
1001
+ "eval_samples_per_second": 195.794,
1002
+ "eval_steps_per_second": 6.134,
1003
+ "step": 7100
1004
+ },
1005
+ {
1006
+ "epoch": 7.06,
1007
+ "learning_rate": 5.872423945044161e-06,
1008
+ "loss": 0.7456,
1009
+ "step": 7200
1010
+ },
1011
+ {
1012
+ "epoch": 7.06,
1013
+ "eval_loss": 1.6487486362457275,
1014
+ "eval_runtime": 61.0413,
1015
+ "eval_samples_per_second": 196.08,
1016
+ "eval_steps_per_second": 6.143,
1017
+ "step": 7200
1018
+ },
1019
+ {
1020
+ "epoch": 7.16,
1021
+ "learning_rate": 5.676153091265948e-06,
1022
+ "loss": 0.7236,
1023
+ "step": 7300
1024
+ },
1025
+ {
1026
+ "epoch": 7.16,
1027
+ "eval_loss": 1.654253602027893,
1028
+ "eval_runtime": 61.1832,
1029
+ "eval_samples_per_second": 195.626,
1030
+ "eval_steps_per_second": 6.129,
1031
+ "step": 7300
1032
+ },
1033
+ {
1034
+ "epoch": 7.26,
1035
+ "learning_rate": 5.479882237487734e-06,
1036
+ "loss": 0.7484,
1037
+ "step": 7400
1038
+ },
1039
+ {
1040
+ "epoch": 7.26,
1041
+ "eval_loss": 1.6202023029327393,
1042
+ "eval_runtime": 61.1291,
1043
+ "eval_samples_per_second": 195.799,
1044
+ "eval_steps_per_second": 6.135,
1045
+ "step": 7400
1046
+ },
1047
+ {
1048
+ "epoch": 7.26,
1049
+ "step": 7400,
1050
+ "total_flos": 1.738708177538776e+17,
1051
+ "train_loss": 0.0,
1052
+ "train_runtime": 0.8545,
1053
+ "train_samples_per_second": 1527321.888,
1054
+ "train_steps_per_second": 2984.353
1055
+ },
1056
+ {
1057
+ "epoch": 7.26,
1058
+ "eval_loss": 1.261675477027893,
1059
+ "eval_runtime": 63.4844,
1060
+ "eval_samples_per_second": 188.535,
1061
+ "eval_steps_per_second": 1.481,
1062
+ "step": 7400
1063
  }
1064
  ],
1065
  "logging_steps": 100,
1066
+ "max_steps": 2550,
1067
+ "num_train_epochs": 10,
1068
  "save_steps": 100,
1069
+ "total_flos": 1.738708177538776e+17,
1070
  "trial_name": null,
1071
  "trial_params": null
1072
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fec995f22a550259b8395d0763625d078960b524379b4835c2d7be674d0fe65a
3
  size 4664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afec34369fc19baa258a16d4008e51527e903540998c874694601e1fcafb68b7
3
  size 4664