jonathanagustin
commited on
Commit
•
7df7b96
1
Parent(s):
425c5f8
Model save
Browse files- README.md +128 -277
- metrics.json +5 -5
- trainer_state.json +774 -18
- training_args.bin +1 -1
README.md
CHANGED
@@ -1,281 +1,132 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
\ in building conversational AI using recent advances in natural language processing.\
|
7 |
-
\ It utilizes a BERT model fine-tuned for extractive question answering.\n\n \
|
8 |
-
\ ## Data Collection and Preprocessing\n The model was trained on the\
|
9 |
-
\ Stanford Question Answering Dataset (SQuAD), which contains over 100,000 question-answer\
|
10 |
-
\ pairs based on Wikipedia articles. The data preprocessing involved tokenizing\
|
11 |
-
\ context paragraphs and questions, truncating sequences to fit BERT's max length,\
|
12 |
-
\ and adding special tokens to mark question and paragraph segments.\n\n \
|
13 |
-
\ ## Model Architecture and Training\n The architecture is based on the BERT\
|
14 |
-
\ transformer model, which was pretrained on large unlabeled text corpora. For this\
|
15 |
-
\ project, the BERT base model was fine-tuned on SQuAD for extractive question answering,\
|
16 |
-
\ with additional output layers for predicting the start and end indices of the\
|
17 |
-
\ answer span.\n\n ## SQuAD 2.0 Dataset\n SQuAD 2.0 combines the existing\
|
18 |
-
\ SQuAD data with over 50,000 unanswerable questions written adversarially by crowdworkers\
|
19 |
-
\ to look similar to answerable ones. This version of the dataset challenges models\
|
20 |
-
\ to not only produce answers when possible but also determine when no answer is\
|
21 |
-
\ supported by the paragraph and abstain from answering.\n "
|
22 |
-
intended_use: "\n - Answering questions from the squad_v2 dataset.\n \
|
23 |
-
\ - Developing question-answering systems within the scope of the aai520-project.\n\
|
24 |
-
\ - Research and experimentation in the NLP question-answering domain.\n\
|
25 |
-
\ "
|
26 |
-
limitations_and_bias: "\n The model inherits limitations and biases from the\
|
27 |
-
\ 'distilbert-base-uncased' model, as it was trained on the same foundational data.\n\
|
28 |
-
\ It may underperform on questions that are ambiguous or too far outside\
|
29 |
-
\ the scope of the topics covered in the squad_v2 dataset.\n Additionally,\
|
30 |
-
\ the model may reflect societal biases present in its training data.\n "
|
31 |
-
ethical_considerations: "\n This model should not be used for making critical\
|
32 |
-
\ decisions without human oversight,\n as it can generate incorrect or biased\
|
33 |
-
\ answers, especially for topics not covered in the training data.\n Users\
|
34 |
-
\ should also consider the ethical implications of using AI in decision-making processes\
|
35 |
-
\ and the potential for perpetuating biases.\n "
|
36 |
-
evaluation: "\n The model was evaluated on the squad_v2 dataset using various\
|
37 |
-
\ metrics. These metrics, along with their corresponding scores,\n are detailed\
|
38 |
-
\ in the 'eval_results' section. The evaluation process ensured a comprehensive\
|
39 |
-
\ assessment of the model's performance\n in question-answering scenarios.\n\
|
40 |
-
\ "
|
41 |
-
training: "\n The model was trained over 10 epochs with a learning rate of\
|
42 |
-
\ 2e-05, using a batch size of 128.\n The training utilized a cross-entropy\
|
43 |
-
\ loss function and the AdamW optimizer, with gradient accumulation over 4 steps.\n\
|
44 |
-
\ "
|
45 |
-
tips_and_tricks: "\n For optimal performance, questions should be clear, concise,\
|
46 |
-
\ and grammatically correct.\n The model performs best on questions related\
|
47 |
-
\ to topics covered in the squad_v2 dataset.\n It is advisable to pre-process\
|
48 |
-
\ text for consistency in encoding and punctuation, and to manage expectations for\
|
49 |
-
\ questions on topics outside the training data.\n "
|
50 |
model-index:
|
51 |
-
- name: distilbert-finetuned-uncased
|
52 |
-
results:
|
53 |
-
- task:
|
54 |
-
type: question-answering
|
55 |
-
dataset:
|
56 |
-
name: SQuAD v2
|
57 |
-
type: squad_v2
|
58 |
-
metrics:
|
59 |
-
- type: Exact
|
60 |
-
value: 100.0
|
61 |
-
- type: F1
|
62 |
-
value: 100.0
|
63 |
-
- type: Total
|
64 |
-
value: 2
|
65 |
-
- type: Hasans Exact
|
66 |
-
value: 100.0
|
67 |
-
- type: Hasans F1
|
68 |
-
value: 100.0
|
69 |
-
- type: Hasans Total
|
70 |
-
value: 2
|
71 |
-
- type: Best Exact
|
72 |
-
value: 100.0
|
73 |
-
- type: Best Exact Thresh
|
74 |
-
value: 0.967875599861145
|
75 |
-
- type: Best F1
|
76 |
-
value: 100.0
|
77 |
-
- type: Best F1 Thresh
|
78 |
-
value: 0.967875599861145
|
79 |
-
- type: Total Time In Seconds
|
80 |
-
value: 0.03484977200002959
|
81 |
-
- type: Samples Per Second
|
82 |
-
value: 57.389184640814925
|
83 |
-
- type: Latency In Seconds
|
84 |
-
value: 0.017424886000014794
|
85 |
---
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
-
|
114 |
-
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
[More Information Needed]
|
210 |
-
|
211 |
-
#### Summary
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
## Model Examination [optional]
|
216 |
-
|
217 |
-
<!-- Relevant interpretability work for the model goes here -->
|
218 |
-
|
219 |
-
[More Information Needed]
|
220 |
-
|
221 |
-
## Environmental Impact
|
222 |
-
|
223 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
224 |
-
|
225 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
226 |
-
|
227 |
-
- **Hardware Type:** [More Information Needed]
|
228 |
-
- **Hours used:** [More Information Needed]
|
229 |
-
- **Cloud Provider:** [More Information Needed]
|
230 |
-
- **Compute Region:** [More Information Needed]
|
231 |
-
- **Carbon Emitted:** [More Information Needed]
|
232 |
-
|
233 |
-
## Technical Specifications [optional]
|
234 |
-
|
235 |
-
### Model Architecture and Objective
|
236 |
-
|
237 |
-
[More Information Needed]
|
238 |
-
|
239 |
-
### Compute Infrastructure
|
240 |
-
|
241 |
-
[More Information Needed]
|
242 |
-
|
243 |
-
#### Hardware
|
244 |
-
|
245 |
-
[More Information Needed]
|
246 |
-
|
247 |
-
#### Software
|
248 |
-
|
249 |
-
[More Information Needed]
|
250 |
-
|
251 |
-
## Citation [optional]
|
252 |
-
|
253 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
254 |
-
|
255 |
-
**BibTeX:**
|
256 |
-
|
257 |
-
[More Information Needed]
|
258 |
-
|
259 |
-
**APA:**
|
260 |
-
|
261 |
-
[More Information Needed]
|
262 |
-
|
263 |
-
## Glossary [optional]
|
264 |
-
|
265 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
266 |
-
|
267 |
-
[More Information Needed]
|
268 |
-
|
269 |
-
## More Information [optional]
|
270 |
-
|
271 |
-
[More Information Needed]
|
272 |
-
|
273 |
-
## Model Card Authors [optional]
|
274 |
-
|
275 |
-
[More Information Needed]
|
276 |
-
|
277 |
-
## Model Card Contact
|
278 |
-
|
279 |
-
[More Information Needed]
|
280 |
-
|
281 |
-
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- squad_v2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
model-index:
|
7 |
+
- name: distilbert-finetuned-uncased-squad_v2
|
8 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# distilbert-finetuned-uncased-squad_v2
|
15 |
+
|
16 |
+
This model was trained from scratch on the squad_v2 dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.2617
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 2e-05
|
38 |
+
- train_batch_size: 64
|
39 |
+
- eval_batch_size: 64
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 4
|
42 |
+
- total_train_batch_size: 256
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 10
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
51 |
+
| 3.6437 | 0.39 | 100 | 2.1780 |
|
52 |
+
| 2.1596 | 0.78 | 200 | 1.6557 |
|
53 |
+
| 1.8138 | 1.18 | 300 | 1.5683 |
|
54 |
+
| 1.6987 | 1.57 | 400 | 1.5076 |
|
55 |
+
| 1.6586 | 1.96 | 500 | 1.5350 |
|
56 |
+
| 1.5957 | 1.18 | 600 | 1.4431 |
|
57 |
+
| 1.5825 | 1.37 | 700 | 1.4955 |
|
58 |
+
| 1.5523 | 1.57 | 800 | 1.4444 |
|
59 |
+
| 1.5346 | 1.76 | 900 | 1.3930 |
|
60 |
+
| 1.5098 | 1.96 | 1000 | 1.4285 |
|
61 |
+
| 1.4632 | 2.16 | 1100 | 1.3630 |
|
62 |
+
| 1.4468 | 2.35 | 1200 | 1.3710 |
|
63 |
+
| 1.4343 | 2.55 | 1300 | 1.3422 |
|
64 |
+
| 1.4225 | 2.75 | 1400 | 1.3971 |
|
65 |
+
| 1.408 | 2.94 | 1500 | 1.4355 |
|
66 |
+
| 1.3609 | 3.14 | 1600 | 1.3332 |
|
67 |
+
| 1.3398 | 3.33 | 1700 | 1.3792 |
|
68 |
+
| 1.3224 | 3.53 | 1800 | 1.4172 |
|
69 |
+
| 1.3152 | 3.73 | 1900 | 1.3956 |
|
70 |
+
| 1.3141 | 3.92 | 2000 | 1.3748 |
|
71 |
+
| 1.3085 | 2.06 | 2100 | 1.3949 |
|
72 |
+
| 1.3325 | 2.16 | 2200 | 1.4870 |
|
73 |
+
| 1.3162 | 2.26 | 2300 | 1.4565 |
|
74 |
+
| 1.2936 | 2.35 | 2400 | 1.4496 |
|
75 |
+
| 1.2648 | 2.45 | 2500 | 1.2868 |
|
76 |
+
| 1.2531 | 2.55 | 2600 | 1.5094 |
|
77 |
+
| 1.2599 | 2.65 | 2700 | 1.3451 |
|
78 |
+
| 1.2545 | 2.75 | 2800 | 1.4071 |
|
79 |
+
| 1.2461 | 2.84 | 2900 | 1.3378 |
|
80 |
+
| 1.2038 | 2.94 | 3000 | 1.2946 |
|
81 |
+
| 1.1677 | 3.04 | 3100 | 1.4802 |
|
82 |
+
| 1.103 | 3.14 | 3200 | 1.3580 |
|
83 |
+
| 1.1205 | 3.24 | 3300 | 1.3819 |
|
84 |
+
| 1.095 | 3.33 | 3400 | 1.4336 |
|
85 |
+
| 1.0896 | 3.43 | 3500 | 1.4963 |
|
86 |
+
| 1.0856 | 3.53 | 3600 | 1.3384 |
|
87 |
+
| 1.0652 | 3.63 | 3700 | 1.3583 |
|
88 |
+
| 1.0859 | 3.73 | 3800 | 1.4140 |
|
89 |
+
| 1.058 | 3.83 | 3900 | 1.2617 |
|
90 |
+
| 1.0724 | 3.92 | 4000 | 1.3552 |
|
91 |
+
| 1.0509 | 4.02 | 4100 | 1.2971 |
|
92 |
+
| 0.97 | 4.12 | 4200 | 1.3268 |
|
93 |
+
| 0.95 | 4.22 | 4300 | 1.3754 |
|
94 |
+
| 0.9337 | 4.32 | 4400 | 1.3687 |
|
95 |
+
| 0.977 | 4.41 | 4500 | 1.3613 |
|
96 |
+
| 0.9484 | 4.51 | 4600 | 1.5139 |
|
97 |
+
| 0.9739 | 4.61 | 4700 | 1.2861 |
|
98 |
+
| 0.955 | 4.71 | 4800 | 1.3667 |
|
99 |
+
| 0.9536 | 4.81 | 4900 | 1.3180 |
|
100 |
+
| 0.9541 | 4.9 | 5000 | 1.4611 |
|
101 |
+
| 0.9462 | 5.0 | 5100 | 1.4067 |
|
102 |
+
| 0.8728 | 5.1 | 5200 | 1.3490 |
|
103 |
+
| 0.8646 | 5.2 | 5300 | 1.4631 |
|
104 |
+
| 0.8683 | 5.3 | 5400 | 1.4978 |
|
105 |
+
| 0.8571 | 5.39 | 5500 | 1.5814 |
|
106 |
+
| 0.8475 | 5.49 | 5600 | 1.5535 |
|
107 |
+
| 0.8653 | 5.59 | 5700 | 1.4938 |
|
108 |
+
| 0.8664 | 5.69 | 5800 | 1.4141 |
|
109 |
+
| 0.889 | 5.79 | 5900 | 1.4487 |
|
110 |
+
| 0.8601 | 5.88 | 6000 | 1.4722 |
|
111 |
+
| 0.8645 | 5.98 | 6100 | 1.5843 |
|
112 |
+
| 0.785 | 6.08 | 6200 | 1.6028 |
|
113 |
+
| 0.7711 | 6.18 | 6300 | 1.6271 |
|
114 |
+
| 0.8056 | 6.28 | 6400 | 1.5399 |
|
115 |
+
| 0.8087 | 6.37 | 6500 | 1.4927 |
|
116 |
+
| 0.7859 | 6.47 | 6600 | 1.4677 |
|
117 |
+
| 0.7896 | 6.57 | 6700 | 1.4780 |
|
118 |
+
| 0.7971 | 6.67 | 6800 | 1.5110 |
|
119 |
+
| 0.7952 | 6.77 | 6900 | 1.5459 |
|
120 |
+
| 0.7971 | 6.87 | 7000 | 1.5282 |
|
121 |
+
| 0.7908 | 6.96 | 7100 | 1.4799 |
|
122 |
+
| 0.7456 | 7.06 | 7200 | 1.6487 |
|
123 |
+
| 0.7236 | 7.16 | 7300 | 1.6543 |
|
124 |
+
| 0.7484 | 7.26 | 7400 | 1.6202 |
|
125 |
+
|
126 |
+
|
127 |
+
### Framework versions
|
128 |
+
|
129 |
+
- Transformers 4.34.1
|
130 |
+
- Pytorch 2.1.0+cu118
|
131 |
+
- Datasets 2.14.6
|
132 |
+
- Tokenizers 0.14.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
metrics.json
CHANGED
@@ -6,10 +6,10 @@
|
|
6 |
"HasAns_f1": 100.0,
|
7 |
"HasAns_total": 2,
|
8 |
"best_exact": 100.0,
|
9 |
-
"best_exact_thresh": 0.
|
10 |
"best_f1": 100.0,
|
11 |
-
"best_f1_thresh": 0.
|
12 |
-
"total_time_in_seconds": 0.
|
13 |
-
"samples_per_second":
|
14 |
-
"latency_in_seconds": 0.
|
15 |
}
|
|
|
6 |
"HasAns_f1": 100.0,
|
7 |
"HasAns_total": 2,
|
8 |
"best_exact": 100.0,
|
9 |
+
"best_exact_thresh": 0.967875599861145,
|
10 |
"best_f1": 100.0,
|
11 |
+
"best_f1_thresh": 0.967875599861145,
|
12 |
+
"total_time_in_seconds": 0.03484977200002959,
|
13 |
+
"samples_per_second": 57.389184640814925,
|
14 |
+
"latency_in_seconds": 0.017424886000014794
|
15 |
}
|
trainer_state.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
-
"best_metric": 1.
|
3 |
-
"best_model_checkpoint": "/content/drive/My Drive/Colab Notebooks/aai520-project/checkpoints/distilbert-finetuned-uncased/checkpoint-
|
4 |
-
"epoch":
|
5 |
"eval_steps": 100,
|
6 |
-
"global_step":
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
@@ -288,29 +288,785 @@
|
|
288 |
"eval_steps_per_second": 22.246,
|
289 |
"step": 2000
|
290 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
{
|
292 |
"epoch": 3.92,
|
293 |
-
"
|
294 |
-
"
|
295 |
-
"
|
296 |
-
"train_runtime": 0.4632,
|
297 |
-
"train_samples_per_second": 1126881.683,
|
298 |
-
"train_steps_per_second": 2201.902
|
299 |
},
|
300 |
{
|
301 |
"epoch": 3.92,
|
302 |
-
"eval_loss": 1.
|
303 |
-
"eval_runtime":
|
304 |
-
"eval_samples_per_second":
|
305 |
-
"eval_steps_per_second":
|
306 |
-
"step":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
}
|
308 |
],
|
309 |
"logging_steps": 100,
|
310 |
-
"max_steps":
|
311 |
-
"num_train_epochs":
|
312 |
"save_steps": 100,
|
313 |
-
"total_flos":
|
314 |
"trial_name": null,
|
315 |
"trial_params": null
|
316 |
}
|
|
|
1 |
{
|
2 |
+
"best_metric": 1.2616792917251587,
|
3 |
+
"best_model_checkpoint": "/content/drive/My Drive/Colab Notebooks/aai520-project/checkpoints/distilbert-finetuned-uncased/checkpoint-3900",
|
4 |
+
"epoch": 7.257416033341506,
|
5 |
"eval_steps": 100,
|
6 |
+
"global_step": 7400,
|
7 |
"is_hyper_param_search": false,
|
8 |
"is_local_process_zero": true,
|
9 |
"is_world_process_zero": true,
|
|
|
288 |
"eval_steps_per_second": 22.246,
|
289 |
"step": 2000
|
290 |
},
|
291 |
+
{
|
292 |
+
"epoch": 2.06,
|
293 |
+
"learning_rate": 1.587831207065751e-05,
|
294 |
+
"loss": 1.3085,
|
295 |
+
"step": 2100
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 2.06,
|
299 |
+
"eval_loss": 1.3948506116867065,
|
300 |
+
"eval_runtime": 61.1737,
|
301 |
+
"eval_samples_per_second": 195.656,
|
302 |
+
"eval_steps_per_second": 6.13,
|
303 |
+
"step": 2100
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 2.16,
|
307 |
+
"learning_rate": 1.5682041216879295e-05,
|
308 |
+
"loss": 1.3325,
|
309 |
+
"step": 2200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.16,
|
313 |
+
"eval_loss": 1.4869881868362427,
|
314 |
+
"eval_runtime": 61.232,
|
315 |
+
"eval_samples_per_second": 195.47,
|
316 |
+
"eval_steps_per_second": 6.124,
|
317 |
+
"step": 2200
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 2.26,
|
321 |
+
"learning_rate": 1.548577036310108e-05,
|
322 |
+
"loss": 1.3162,
|
323 |
+
"step": 2300
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 2.26,
|
327 |
+
"eval_loss": 1.4565335512161255,
|
328 |
+
"eval_runtime": 61.2209,
|
329 |
+
"eval_samples_per_second": 195.505,
|
330 |
+
"eval_steps_per_second": 6.125,
|
331 |
+
"step": 2300
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.35,
|
335 |
+
"learning_rate": 1.5289499509322867e-05,
|
336 |
+
"loss": 1.2936,
|
337 |
+
"step": 2400
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 2.35,
|
341 |
+
"eval_loss": 1.449613332748413,
|
342 |
+
"eval_runtime": 61.2023,
|
343 |
+
"eval_samples_per_second": 195.565,
|
344 |
+
"eval_steps_per_second": 6.127,
|
345 |
+
"step": 2400
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.45,
|
349 |
+
"learning_rate": 1.5093228655544654e-05,
|
350 |
+
"loss": 1.2648,
|
351 |
+
"step": 2500
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 2.45,
|
355 |
+
"eval_loss": 1.2867687940597534,
|
356 |
+
"eval_runtime": 61.2092,
|
357 |
+
"eval_samples_per_second": 195.542,
|
358 |
+
"eval_steps_per_second": 6.127,
|
359 |
+
"step": 2500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 2.55,
|
363 |
+
"learning_rate": 1.4896957801766438e-05,
|
364 |
+
"loss": 1.2531,
|
365 |
+
"step": 2600
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"epoch": 2.55,
|
369 |
+
"eval_loss": 1.5093618631362915,
|
370 |
+
"eval_runtime": 60.9769,
|
371 |
+
"eval_samples_per_second": 196.287,
|
372 |
+
"eval_steps_per_second": 6.15,
|
373 |
+
"step": 2600
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 2.65,
|
377 |
+
"learning_rate": 1.4700686947988226e-05,
|
378 |
+
"loss": 1.2599,
|
379 |
+
"step": 2700
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 2.65,
|
383 |
+
"eval_loss": 1.3450872898101807,
|
384 |
+
"eval_runtime": 61.0675,
|
385 |
+
"eval_samples_per_second": 195.996,
|
386 |
+
"eval_steps_per_second": 6.141,
|
387 |
+
"step": 2700
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 2.75,
|
391 |
+
"learning_rate": 1.4504416094210011e-05,
|
392 |
+
"loss": 1.2545,
|
393 |
+
"step": 2800
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 2.75,
|
397 |
+
"eval_loss": 1.407065749168396,
|
398 |
+
"eval_runtime": 61.1333,
|
399 |
+
"eval_samples_per_second": 195.785,
|
400 |
+
"eval_steps_per_second": 6.134,
|
401 |
+
"step": 2800
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 2.84,
|
405 |
+
"learning_rate": 1.4308145240431797e-05,
|
406 |
+
"loss": 1.2461,
|
407 |
+
"step": 2900
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"epoch": 2.84,
|
411 |
+
"eval_loss": 1.3378450870513916,
|
412 |
+
"eval_runtime": 61.1961,
|
413 |
+
"eval_samples_per_second": 195.584,
|
414 |
+
"eval_steps_per_second": 6.128,
|
415 |
+
"step": 2900
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 2.94,
|
419 |
+
"learning_rate": 1.4111874386653583e-05,
|
420 |
+
"loss": 1.2038,
|
421 |
+
"step": 3000
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 2.94,
|
425 |
+
"eval_loss": 1.294646143913269,
|
426 |
+
"eval_runtime": 61.1636,
|
427 |
+
"eval_samples_per_second": 195.688,
|
428 |
+
"eval_steps_per_second": 6.131,
|
429 |
+
"step": 3000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.04,
|
433 |
+
"learning_rate": 1.391560353287537e-05,
|
434 |
+
"loss": 1.1677,
|
435 |
+
"step": 3100
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 3.04,
|
439 |
+
"eval_loss": 1.480231761932373,
|
440 |
+
"eval_runtime": 61.0678,
|
441 |
+
"eval_samples_per_second": 195.995,
|
442 |
+
"eval_steps_per_second": 6.141,
|
443 |
+
"step": 3100
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 3.14,
|
447 |
+
"learning_rate": 1.3719332679097154e-05,
|
448 |
+
"loss": 1.103,
|
449 |
+
"step": 3200
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 3.14,
|
453 |
+
"eval_loss": 1.3580176830291748,
|
454 |
+
"eval_runtime": 61.18,
|
455 |
+
"eval_samples_per_second": 195.636,
|
456 |
+
"eval_steps_per_second": 6.129,
|
457 |
+
"step": 3200
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 3.24,
|
461 |
+
"learning_rate": 1.3523061825318942e-05,
|
462 |
+
"loss": 1.1205,
|
463 |
+
"step": 3300
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 3.24,
|
467 |
+
"eval_loss": 1.3818870782852173,
|
468 |
+
"eval_runtime": 60.9958,
|
469 |
+
"eval_samples_per_second": 196.227,
|
470 |
+
"eval_steps_per_second": 6.148,
|
471 |
+
"step": 3300
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 3.33,
|
475 |
+
"learning_rate": 1.3326790971540726e-05,
|
476 |
+
"loss": 1.095,
|
477 |
+
"step": 3400
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 3.33,
|
481 |
+
"eval_loss": 1.4335613250732422,
|
482 |
+
"eval_runtime": 61.1187,
|
483 |
+
"eval_samples_per_second": 195.832,
|
484 |
+
"eval_steps_per_second": 6.136,
|
485 |
+
"step": 3400
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 3.43,
|
489 |
+
"learning_rate": 1.3130520117762513e-05,
|
490 |
+
"loss": 1.0896,
|
491 |
+
"step": 3500
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 3.43,
|
495 |
+
"eval_loss": 1.4962539672851562,
|
496 |
+
"eval_runtime": 61.0543,
|
497 |
+
"eval_samples_per_second": 196.039,
|
498 |
+
"eval_steps_per_second": 6.142,
|
499 |
+
"step": 3500
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 3.53,
|
503 |
+
"learning_rate": 1.2934249263984299e-05,
|
504 |
+
"loss": 1.0856,
|
505 |
+
"step": 3600
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 3.53,
|
509 |
+
"eval_loss": 1.3384228944778442,
|
510 |
+
"eval_runtime": 61.1027,
|
511 |
+
"eval_samples_per_second": 195.883,
|
512 |
+
"eval_steps_per_second": 6.137,
|
513 |
+
"step": 3600
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 3.63,
|
517 |
+
"learning_rate": 1.2737978410206085e-05,
|
518 |
+
"loss": 1.0652,
|
519 |
+
"step": 3700
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 3.63,
|
523 |
+
"eval_loss": 1.3583240509033203,
|
524 |
+
"eval_runtime": 61.0826,
|
525 |
+
"eval_samples_per_second": 195.948,
|
526 |
+
"eval_steps_per_second": 6.139,
|
527 |
+
"step": 3700
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 3.73,
|
531 |
+
"learning_rate": 1.254170755642787e-05,
|
532 |
+
"loss": 1.0859,
|
533 |
+
"step": 3800
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 3.73,
|
537 |
+
"eval_loss": 1.414008378982544,
|
538 |
+
"eval_runtime": 61.0681,
|
539 |
+
"eval_samples_per_second": 195.994,
|
540 |
+
"eval_steps_per_second": 6.141,
|
541 |
+
"step": 3800
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 3.83,
|
545 |
+
"learning_rate": 1.2345436702649658e-05,
|
546 |
+
"loss": 1.058,
|
547 |
+
"step": 3900
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"epoch": 3.83,
|
551 |
+
"eval_loss": 1.2616792917251587,
|
552 |
+
"eval_runtime": 61.1143,
|
553 |
+
"eval_samples_per_second": 195.846,
|
554 |
+
"eval_steps_per_second": 6.136,
|
555 |
+
"step": 3900
|
556 |
+
},
|
557 |
{
|
558 |
"epoch": 3.92,
|
559 |
+
"learning_rate": 1.2149165848871442e-05,
|
560 |
+
"loss": 1.0724,
|
561 |
+
"step": 4000
|
|
|
|
|
|
|
562 |
},
|
563 |
{
|
564 |
"epoch": 3.92,
|
565 |
+
"eval_loss": 1.3551816940307617,
|
566 |
+
"eval_runtime": 61.0974,
|
567 |
+
"eval_samples_per_second": 195.9,
|
568 |
+
"eval_steps_per_second": 6.138,
|
569 |
+
"step": 4000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 4.02,
|
573 |
+
"learning_rate": 1.1954857703631012e-05,
|
574 |
+
"loss": 1.0509,
|
575 |
+
"step": 4100
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 4.02,
|
579 |
+
"eval_loss": 1.2970877885818481,
|
580 |
+
"eval_runtime": 61.0416,
|
581 |
+
"eval_samples_per_second": 196.079,
|
582 |
+
"eval_steps_per_second": 6.143,
|
583 |
+
"step": 4100
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 4.12,
|
587 |
+
"learning_rate": 1.1758586849852797e-05,
|
588 |
+
"loss": 0.97,
|
589 |
+
"step": 4200
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 4.12,
|
593 |
+
"eval_loss": 1.3268026113510132,
|
594 |
+
"eval_runtime": 61.0438,
|
595 |
+
"eval_samples_per_second": 196.072,
|
596 |
+
"eval_steps_per_second": 6.143,
|
597 |
+
"step": 4200
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 4.22,
|
601 |
+
"learning_rate": 1.1562315996074585e-05,
|
602 |
+
"loss": 0.95,
|
603 |
+
"step": 4300
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 4.22,
|
607 |
+
"eval_loss": 1.3753584623336792,
|
608 |
+
"eval_runtime": 61.1527,
|
609 |
+
"eval_samples_per_second": 195.723,
|
610 |
+
"eval_steps_per_second": 6.132,
|
611 |
+
"step": 4300
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 4.32,
|
615 |
+
"learning_rate": 1.1366045142296369e-05,
|
616 |
+
"loss": 0.9337,
|
617 |
+
"step": 4400
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 4.32,
|
621 |
+
"eval_loss": 1.3687292337417603,
|
622 |
+
"eval_runtime": 61.1591,
|
623 |
+
"eval_samples_per_second": 195.703,
|
624 |
+
"eval_steps_per_second": 6.132,
|
625 |
+
"step": 4400
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 4.41,
|
629 |
+
"learning_rate": 1.1169774288518156e-05,
|
630 |
+
"loss": 0.977,
|
631 |
+
"step": 4500
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 4.41,
|
635 |
+
"eval_loss": 1.3613475561141968,
|
636 |
+
"eval_runtime": 61.1865,
|
637 |
+
"eval_samples_per_second": 195.615,
|
638 |
+
"eval_steps_per_second": 6.129,
|
639 |
+
"step": 4500
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 4.51,
|
643 |
+
"learning_rate": 1.0973503434739942e-05,
|
644 |
+
"loss": 0.9484,
|
645 |
+
"step": 4600
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 4.51,
|
649 |
+
"eval_loss": 1.513939380645752,
|
650 |
+
"eval_runtime": 61.2246,
|
651 |
+
"eval_samples_per_second": 195.493,
|
652 |
+
"eval_steps_per_second": 6.125,
|
653 |
+
"step": 4600
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 4.61,
|
657 |
+
"learning_rate": 1.0777232580961728e-05,
|
658 |
+
"loss": 0.9739,
|
659 |
+
"step": 4700
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"epoch": 4.61,
|
663 |
+
"eval_loss": 1.2861210107803345,
|
664 |
+
"eval_runtime": 61.1721,
|
665 |
+
"eval_samples_per_second": 195.661,
|
666 |
+
"eval_steps_per_second": 6.13,
|
667 |
+
"step": 4700
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 4.71,
|
671 |
+
"learning_rate": 1.0580961727183514e-05,
|
672 |
+
"loss": 0.955,
|
673 |
+
"step": 4800
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"epoch": 4.71,
|
677 |
+
"eval_loss": 1.3666507005691528,
|
678 |
+
"eval_runtime": 61.1291,
|
679 |
+
"eval_samples_per_second": 195.799,
|
680 |
+
"eval_steps_per_second": 6.135,
|
681 |
+
"step": 4800
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 4.81,
|
685 |
+
"learning_rate": 1.0384690873405301e-05,
|
686 |
+
"loss": 0.9536,
|
687 |
+
"step": 4900
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 4.81,
|
691 |
+
"eval_loss": 1.3179610967636108,
|
692 |
+
"eval_runtime": 61.1785,
|
693 |
+
"eval_samples_per_second": 195.641,
|
694 |
+
"eval_steps_per_second": 6.13,
|
695 |
+
"step": 4900
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 4.9,
|
699 |
+
"learning_rate": 1.0188420019627085e-05,
|
700 |
+
"loss": 0.9541,
|
701 |
+
"step": 5000
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 4.9,
|
705 |
+
"eval_loss": 1.4610702991485596,
|
706 |
+
"eval_runtime": 61.0871,
|
707 |
+
"eval_samples_per_second": 195.933,
|
708 |
+
"eval_steps_per_second": 6.139,
|
709 |
+
"step": 5000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 5.0,
|
713 |
+
"learning_rate": 9.992149165848873e-06,
|
714 |
+
"loss": 0.9462,
|
715 |
+
"step": 5100
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"epoch": 5.0,
|
719 |
+
"eval_loss": 1.4066604375839233,
|
720 |
+
"eval_runtime": 61.1331,
|
721 |
+
"eval_samples_per_second": 195.786,
|
722 |
+
"eval_steps_per_second": 6.134,
|
723 |
+
"step": 5100
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 5.1,
|
727 |
+
"learning_rate": 9.795878312070658e-06,
|
728 |
+
"loss": 0.8728,
|
729 |
+
"step": 5200
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 5.1,
|
733 |
+
"eval_loss": 1.3490474224090576,
|
734 |
+
"eval_runtime": 61.0973,
|
735 |
+
"eval_samples_per_second": 195.901,
|
736 |
+
"eval_steps_per_second": 6.138,
|
737 |
+
"step": 5200
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 5.2,
|
741 |
+
"learning_rate": 9.599607458292444e-06,
|
742 |
+
"loss": 0.8646,
|
743 |
+
"step": 5300
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 5.2,
|
747 |
+
"eval_loss": 1.4630706310272217,
|
748 |
+
"eval_runtime": 61.0445,
|
749 |
+
"eval_samples_per_second": 196.07,
|
750 |
+
"eval_steps_per_second": 6.143,
|
751 |
+
"step": 5300
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 5.3,
|
755 |
+
"learning_rate": 9.40333660451423e-06,
|
756 |
+
"loss": 0.8683,
|
757 |
+
"step": 5400
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 5.3,
|
761 |
+
"eval_loss": 1.4977810382843018,
|
762 |
+
"eval_runtime": 61.0754,
|
763 |
+
"eval_samples_per_second": 195.971,
|
764 |
+
"eval_steps_per_second": 6.14,
|
765 |
+
"step": 5400
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 5.39,
|
769 |
+
"learning_rate": 9.207065750736016e-06,
|
770 |
+
"loss": 0.8571,
|
771 |
+
"step": 5500
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 5.39,
|
775 |
+
"eval_loss": 1.5814284086227417,
|
776 |
+
"eval_runtime": 61.0641,
|
777 |
+
"eval_samples_per_second": 196.007,
|
778 |
+
"eval_steps_per_second": 6.141,
|
779 |
+
"step": 5500
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 5.49,
|
783 |
+
"learning_rate": 9.010794896957803e-06,
|
784 |
+
"loss": 0.8475,
|
785 |
+
"step": 5600
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 5.49,
|
789 |
+
"eval_loss": 1.5535171031951904,
|
790 |
+
"eval_runtime": 61.1062,
|
791 |
+
"eval_samples_per_second": 195.872,
|
792 |
+
"eval_steps_per_second": 6.137,
|
793 |
+
"step": 5600
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 5.59,
|
797 |
+
"learning_rate": 8.814524043179589e-06,
|
798 |
+
"loss": 0.8653,
|
799 |
+
"step": 5700
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"epoch": 5.59,
|
803 |
+
"eval_loss": 1.4938398599624634,
|
804 |
+
"eval_runtime": 61.1584,
|
805 |
+
"eval_samples_per_second": 195.705,
|
806 |
+
"eval_steps_per_second": 6.132,
|
807 |
+
"step": 5700
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 5.69,
|
811 |
+
"learning_rate": 8.618253189401375e-06,
|
812 |
+
"loss": 0.8664,
|
813 |
+
"step": 5800
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 5.69,
|
817 |
+
"eval_loss": 1.414058804512024,
|
818 |
+
"eval_runtime": 61.1886,
|
819 |
+
"eval_samples_per_second": 195.608,
|
820 |
+
"eval_steps_per_second": 6.129,
|
821 |
+
"step": 5800
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 5.79,
|
825 |
+
"learning_rate": 8.42198233562316e-06,
|
826 |
+
"loss": 0.889,
|
827 |
+
"step": 5900
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 5.79,
|
831 |
+
"eval_loss": 1.4486888647079468,
|
832 |
+
"eval_runtime": 61.1387,
|
833 |
+
"eval_samples_per_second": 195.768,
|
834 |
+
"eval_steps_per_second": 6.134,
|
835 |
+
"step": 5900
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 5.88,
|
839 |
+
"learning_rate": 8.225711481844946e-06,
|
840 |
+
"loss": 0.8601,
|
841 |
+
"step": 6000
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 5.88,
|
845 |
+
"eval_loss": 1.47215735912323,
|
846 |
+
"eval_runtime": 61.1249,
|
847 |
+
"eval_samples_per_second": 195.812,
|
848 |
+
"eval_steps_per_second": 6.135,
|
849 |
+
"step": 6000
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 5.98,
|
853 |
+
"learning_rate": 8.031403336604516e-06,
|
854 |
+
"loss": 0.8645,
|
855 |
+
"step": 6100
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 5.98,
|
859 |
+
"eval_loss": 1.5842609405517578,
|
860 |
+
"eval_runtime": 61.0783,
|
861 |
+
"eval_samples_per_second": 195.962,
|
862 |
+
"eval_steps_per_second": 6.14,
|
863 |
+
"step": 6100
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 6.08,
|
867 |
+
"learning_rate": 7.835132482826301e-06,
|
868 |
+
"loss": 0.785,
|
869 |
+
"step": 6200
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 6.08,
|
873 |
+
"eval_loss": 1.6027640104293823,
|
874 |
+
"eval_runtime": 61.1172,
|
875 |
+
"eval_samples_per_second": 195.837,
|
876 |
+
"eval_steps_per_second": 6.136,
|
877 |
+
"step": 6200
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 6.18,
|
881 |
+
"learning_rate": 7.638861629048087e-06,
|
882 |
+
"loss": 0.7711,
|
883 |
+
"step": 6300
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 6.18,
|
887 |
+
"eval_loss": 1.6270956993103027,
|
888 |
+
"eval_runtime": 61.0612,
|
889 |
+
"eval_samples_per_second": 196.016,
|
890 |
+
"eval_steps_per_second": 6.141,
|
891 |
+
"step": 6300
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 6.28,
|
895 |
+
"learning_rate": 7.442590775269874e-06,
|
896 |
+
"loss": 0.8056,
|
897 |
+
"step": 6400
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 6.28,
|
901 |
+
"eval_loss": 1.5399292707443237,
|
902 |
+
"eval_runtime": 61.1714,
|
903 |
+
"eval_samples_per_second": 195.663,
|
904 |
+
"eval_steps_per_second": 6.13,
|
905 |
+
"step": 6400
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 6.37,
|
909 |
+
"learning_rate": 7.246319921491659e-06,
|
910 |
+
"loss": 0.8087,
|
911 |
+
"step": 6500
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 6.37,
|
915 |
+
"eval_loss": 1.492693305015564,
|
916 |
+
"eval_runtime": 61.0261,
|
917 |
+
"eval_samples_per_second": 196.129,
|
918 |
+
"eval_steps_per_second": 6.145,
|
919 |
+
"step": 6500
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 6.47,
|
923 |
+
"learning_rate": 7.0500490677134445e-06,
|
924 |
+
"loss": 0.7859,
|
925 |
+
"step": 6600
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 6.47,
|
929 |
+
"eval_loss": 1.4677467346191406,
|
930 |
+
"eval_runtime": 61.0807,
|
931 |
+
"eval_samples_per_second": 195.954,
|
932 |
+
"eval_steps_per_second": 6.139,
|
933 |
+
"step": 6600
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 6.57,
|
937 |
+
"learning_rate": 6.853778213935232e-06,
|
938 |
+
"loss": 0.7896,
|
939 |
+
"step": 6700
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 6.57,
|
943 |
+
"eval_loss": 1.4780325889587402,
|
944 |
+
"eval_runtime": 61.0973,
|
945 |
+
"eval_samples_per_second": 195.901,
|
946 |
+
"eval_steps_per_second": 6.138,
|
947 |
+
"step": 6700
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 6.67,
|
951 |
+
"learning_rate": 6.657507360157017e-06,
|
952 |
+
"loss": 0.7971,
|
953 |
+
"step": 6800
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 6.67,
|
957 |
+
"eval_loss": 1.5110238790512085,
|
958 |
+
"eval_runtime": 61.1306,
|
959 |
+
"eval_samples_per_second": 195.794,
|
960 |
+
"eval_steps_per_second": 6.134,
|
961 |
+
"step": 6800
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 6.77,
|
965 |
+
"learning_rate": 6.461236506378803e-06,
|
966 |
+
"loss": 0.7952,
|
967 |
+
"step": 6900
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 6.77,
|
971 |
+
"eval_loss": 1.545872688293457,
|
972 |
+
"eval_runtime": 61.0099,
|
973 |
+
"eval_samples_per_second": 196.181,
|
974 |
+
"eval_steps_per_second": 6.147,
|
975 |
+
"step": 6900
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 6.87,
|
979 |
+
"learning_rate": 6.26496565260059e-06,
|
980 |
+
"loss": 0.7971,
|
981 |
+
"step": 7000
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 6.87,
|
985 |
+
"eval_loss": 1.5281697511672974,
|
986 |
+
"eval_runtime": 61.0816,
|
987 |
+
"eval_samples_per_second": 195.951,
|
988 |
+
"eval_steps_per_second": 6.139,
|
989 |
+
"step": 7000
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 6.96,
|
993 |
+
"learning_rate": 6.068694798822376e-06,
|
994 |
+
"loss": 0.7908,
|
995 |
+
"step": 7100
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 6.96,
|
999 |
+
"eval_loss": 1.4799116849899292,
|
1000 |
+
"eval_runtime": 61.1305,
|
1001 |
+
"eval_samples_per_second": 195.794,
|
1002 |
+
"eval_steps_per_second": 6.134,
|
1003 |
+
"step": 7100
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 7.06,
|
1007 |
+
"learning_rate": 5.872423945044161e-06,
|
1008 |
+
"loss": 0.7456,
|
1009 |
+
"step": 7200
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 7.06,
|
1013 |
+
"eval_loss": 1.6487486362457275,
|
1014 |
+
"eval_runtime": 61.0413,
|
1015 |
+
"eval_samples_per_second": 196.08,
|
1016 |
+
"eval_steps_per_second": 6.143,
|
1017 |
+
"step": 7200
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 7.16,
|
1021 |
+
"learning_rate": 5.676153091265948e-06,
|
1022 |
+
"loss": 0.7236,
|
1023 |
+
"step": 7300
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 7.16,
|
1027 |
+
"eval_loss": 1.654253602027893,
|
1028 |
+
"eval_runtime": 61.1832,
|
1029 |
+
"eval_samples_per_second": 195.626,
|
1030 |
+
"eval_steps_per_second": 6.129,
|
1031 |
+
"step": 7300
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 7.26,
|
1035 |
+
"learning_rate": 5.479882237487734e-06,
|
1036 |
+
"loss": 0.7484,
|
1037 |
+
"step": 7400
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"epoch": 7.26,
|
1041 |
+
"eval_loss": 1.6202023029327393,
|
1042 |
+
"eval_runtime": 61.1291,
|
1043 |
+
"eval_samples_per_second": 195.799,
|
1044 |
+
"eval_steps_per_second": 6.135,
|
1045 |
+
"step": 7400
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 7.26,
|
1049 |
+
"step": 7400,
|
1050 |
+
"total_flos": 1.738708177538776e+17,
|
1051 |
+
"train_loss": 0.0,
|
1052 |
+
"train_runtime": 0.8545,
|
1053 |
+
"train_samples_per_second": 1527321.888,
|
1054 |
+
"train_steps_per_second": 2984.353
|
1055 |
+
},
|
1056 |
+
{
|
1057 |
+
"epoch": 7.26,
|
1058 |
+
"eval_loss": 1.261675477027893,
|
1059 |
+
"eval_runtime": 63.4844,
|
1060 |
+
"eval_samples_per_second": 188.535,
|
1061 |
+
"eval_steps_per_second": 1.481,
|
1062 |
+
"step": 7400
|
1063 |
}
|
1064 |
],
|
1065 |
"logging_steps": 100,
|
1066 |
+
"max_steps": 2550,
|
1067 |
+
"num_train_epochs": 10,
|
1068 |
"save_steps": 100,
|
1069 |
+
"total_flos": 1.738708177538776e+17,
|
1070 |
"trial_name": null,
|
1071 |
"trial_params": null
|
1072 |
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4664
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afec34369fc19baa258a16d4008e51527e903540998c874694601e1fcafb68b7
|
3 |
size 4664
|