File size: 3,353 Bytes
09fb982 61a0c91 09fb982 61a0c91 cc749b9 afb24a5 19d9c40 b473cf1 d6d53db a213901 a8bb7b3 15f7878 0cd9407 d400e69 7215b1a ed1cbff 2099af5 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 09fb982 61a0c91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-finetuned-squad_v2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: SQuAD v2
type: squad_v2
split: validation
metrics:
- type: exact
value: 100.0
name: Exact
- type: f1
value: 100.0
name: F1
- type: total
value: 2
name: Total
- type: HasAns_exact
value: 100.0
name: Hasans_exact
- type: HasAns_f1
value: 100.0
name: Hasans_f1
- type: HasAns_total
value: 2
name: Hasans_total
- type: best_exact
value: 100.0
name: Best_exact
- type: best_exact_thresh
value: 0.9603068232536316
name: Best_exact_thresh
- type: best_f1
value: 100.0
name: Best_f1
- type: best_f1_thresh
value: 0.9603068232536316
name: Best_f1_thresh
- type: total_time_in_seconds
value: 0.034724613000435056
name: Total_time_in_seconds
- type: samples_per_second
value: 57.59603425889707
name: Samples_per_second
- type: latency_in_seconds
value: 0.017362306500217528
name: Latency_in_seconds
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-squad_v2
This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8582
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9129 | 0.2 | 100 | 1.4700 |
| 1.4395 | 0.39 | 200 | 1.2407 |
| 1.2356 | 0.59 | 300 | 1.0325 |
| 1.1284 | 0.78 | 400 | 0.9750 |
| 1.0821 | 0.98 | 500 | 0.9345 |
| 0.9978 | 1.18 | 600 | 0.9893 |
| 0.9697 | 1.37 | 700 | 0.9300 |
| 0.9455 | 1.57 | 800 | 0.9351 |
| 0.9322 | 1.76 | 900 | 0.9451 |
| 0.9269 | 1.96 | 1000 | 0.9064 |
| 0.9105 | 2.16 | 1100 | 0.8837 |
| 0.8805 | 2.35 | 1200 | 0.8876 |
| 0.8703 | 2.55 | 1300 | 0.9853 |
| 0.8699 | 2.75 | 1400 | 0.9235 |
| 0.8633 | 2.94 | 1500 | 0.8930 |
| 0.828 | 3.14 | 1600 | 0.8582 |
| 0.8284 | 3.33 | 1700 | 0.9203 |
| 0.8076 | 3.53 | 1800 | 0.8866 |
| 0.7805 | 3.73 | 1900 | 0.9099 |
| 0.7974 | 3.92 | 2000 | 0.8746 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|