File size: 3,353 Bytes
09fb982
61a0c91
 
 
 
09fb982
61a0c91
cc749b9
 
 
 
 
 
 
 
 
 
 
 
afb24a5
 
 
19d9c40
 
 
b473cf1
 
 
d6d53db
 
 
a213901
 
 
a8bb7b3
 
 
15f7878
 
 
0cd9407
 
 
d400e69
 
 
7215b1a
 
 
ed1cbff
 
 
2099af5
 
 
09fb982
 
61a0c91
 
09fb982
61a0c91
09fb982
61a0c91
 
 
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
 
 
 
 
 
 
 
 
 
09fb982
61a0c91
09fb982
61a0c91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fb982
 
61a0c91
09fb982
61a0c91
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-finetuned-squad_v2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: SQuAD v2
      type: squad_v2
      split: validation
    metrics:
    - type: exact
      value: 100.0
      name: Exact
    - type: f1
      value: 100.0
      name: F1
    - type: total
      value: 2
      name: Total
    - type: HasAns_exact
      value: 100.0
      name: Hasans_exact
    - type: HasAns_f1
      value: 100.0
      name: Hasans_f1
    - type: HasAns_total
      value: 2
      name: Hasans_total
    - type: best_exact
      value: 100.0
      name: Best_exact
    - type: best_exact_thresh
      value: 0.9603068232536316
      name: Best_exact_thresh
    - type: best_f1
      value: 100.0
      name: Best_f1
    - type: best_f1_thresh
      value: 0.9603068232536316
      name: Best_f1_thresh
    - type: total_time_in_seconds
      value: 0.034724613000435056
      name: Total_time_in_seconds
    - type: samples_per_second
      value: 57.59603425889707
      name: Samples_per_second
    - type: latency_in_seconds
      value: 0.017362306500217528
      name: Latency_in_seconds
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-finetuned-squad_v2

This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8582

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9129        | 0.2   | 100  | 1.4700          |
| 1.4395        | 0.39  | 200  | 1.2407          |
| 1.2356        | 0.59  | 300  | 1.0325          |
| 1.1284        | 0.78  | 400  | 0.9750          |
| 1.0821        | 0.98  | 500  | 0.9345          |
| 0.9978        | 1.18  | 600  | 0.9893          |
| 0.9697        | 1.37  | 700  | 0.9300          |
| 0.9455        | 1.57  | 800  | 0.9351          |
| 0.9322        | 1.76  | 900  | 0.9451          |
| 0.9269        | 1.96  | 1000 | 0.9064          |
| 0.9105        | 2.16  | 1100 | 0.8837          |
| 0.8805        | 2.35  | 1200 | 0.8876          |
| 0.8703        | 2.55  | 1300 | 0.9853          |
| 0.8699        | 2.75  | 1400 | 0.9235          |
| 0.8633        | 2.94  | 1500 | 0.8930          |
| 0.828         | 3.14  | 1600 | 0.8582          |
| 0.8284        | 3.33  | 1700 | 0.9203          |
| 0.8076        | 3.53  | 1800 | 0.8866          |
| 0.7805        | 3.73  | 1900 | 0.9099          |
| 0.7974        | 3.92  | 2000 | 0.8746          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1