File size: 3,257 Bytes
09fb982
9f68fb1
 
 
 
09fb982
9f68fb1
823f10d
 
 
 
 
 
 
 
 
 
 
 
51acb36
 
 
30e03d0
 
 
9ae3ac5
 
 
c0c2ad6
 
 
9cfb35d
 
 
f967096
 
 
07c59df
 
 
580d252
 
 
a2c4702
 
 
3787a2e
 
 
3ed7c7f
 
 
09fb982
 
9f68fb1
 
09fb982
9f68fb1
09fb982
9f68fb1
 
 
09fb982
9f68fb1
09fb982
9f68fb1
09fb982
9f68fb1
09fb982
9f68fb1
09fb982
9f68fb1
09fb982
9f68fb1
09fb982
9f68fb1
09fb982
9f68fb1
09fb982
9f68fb1
 
 
 
 
 
 
 
 
 
09fb982
9f68fb1
09fb982
9f68fb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fb982
 
9f68fb1
09fb982
9f68fb1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-finetuned-squad_v2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: SQuAD v2
      type: squad_v2
      split: validation
    metrics:
    - type: exact
      value: 100.0
      name: Exact
    - type: f1
      value: 100.0
      name: F1
    - type: total
      value: 2
      name: Total
    - type: HasAns_exact
      value: 100.0
      name: Hasans_exact
    - type: HasAns_f1
      value: 100.0
      name: Hasans_f1
    - type: HasAns_total
      value: 2
      name: Hasans_total
    - type: best_exact
      value: 100.0
      name: Best_exact
    - type: best_exact_thresh
      value: 0.9603068232536316
      name: Best_exact_thresh
    - type: best_f1
      value: 100.0
      name: Best_f1
    - type: best_f1_thresh
      value: 0.9603068232536316
      name: Best_f1_thresh
    - type: total_time_in_seconds
      value: 0.036892927000735654
      name: Total_time_in_seconds
    - type: samples_per_second
      value: 54.21093316776193
      name: Samples_per_second
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-finetuned-squad_v2

This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8582

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9129        | 0.2   | 100  | 1.4700          |
| 1.4395        | 0.39  | 200  | 1.2407          |
| 1.2356        | 0.59  | 300  | 1.0325          |
| 1.1284        | 0.78  | 400  | 0.9750          |
| 1.0821        | 0.98  | 500  | 0.9345          |
| 0.9978        | 1.18  | 600  | 0.9893          |
| 0.9697        | 1.37  | 700  | 0.9300          |
| 0.9455        | 1.57  | 800  | 0.9351          |
| 0.9322        | 1.76  | 900  | 0.9451          |
| 0.9269        | 1.96  | 1000 | 0.9064          |
| 0.9105        | 2.16  | 1100 | 0.8837          |
| 0.8805        | 2.35  | 1200 | 0.8876          |
| 0.8703        | 2.55  | 1300 | 0.9853          |
| 0.8699        | 2.75  | 1400 | 0.9235          |
| 0.8633        | 2.94  | 1500 | 0.8930          |
| 0.828         | 3.14  | 1600 | 0.8582          |
| 0.8284        | 3.33  | 1700 | 0.9203          |
| 0.8076        | 3.53  | 1800 | 0.8866          |
| 0.7805        | 3.73  | 1900 | 0.9099          |
| 0.7974        | 3.92  | 2000 | 0.8746          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1