File size: 2,247 Bytes
09fb982
61a0c91
 
 
 
09fb982
61a0c91
 
09fb982
 
61a0c91
 
09fb982
61a0c91
09fb982
61a0c91
 
 
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
09fb982
61a0c91
 
 
 
 
 
 
 
 
 
09fb982
61a0c91
09fb982
61a0c91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fb982
 
61a0c91
09fb982
61a0c91
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-finetuned-squad_v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-finetuned-squad_v2

This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8582

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9129        | 0.2   | 100  | 1.4700          |
| 1.4395        | 0.39  | 200  | 1.2407          |
| 1.2356        | 0.59  | 300  | 1.0325          |
| 1.1284        | 0.78  | 400  | 0.9750          |
| 1.0821        | 0.98  | 500  | 0.9345          |
| 0.9978        | 1.18  | 600  | 0.9893          |
| 0.9697        | 1.37  | 700  | 0.9300          |
| 0.9455        | 1.57  | 800  | 0.9351          |
| 0.9322        | 1.76  | 900  | 0.9451          |
| 0.9269        | 1.96  | 1000 | 0.9064          |
| 0.9105        | 2.16  | 1100 | 0.8837          |
| 0.8805        | 2.35  | 1200 | 0.8876          |
| 0.8703        | 2.55  | 1300 | 0.9853          |
| 0.8699        | 2.75  | 1400 | 0.9235          |
| 0.8633        | 2.94  | 1500 | 0.8930          |
| 0.828         | 3.14  | 1600 | 0.8582          |
| 0.8284        | 3.33  | 1700 | 0.9203          |
| 0.8076        | 3.53  | 1800 | 0.8866          |
| 0.7805        | 3.73  | 1900 | 0.9099          |
| 0.7974        | 3.92  | 2000 | 0.8746          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1