File size: 3,352 Bytes
09fb982
0365b89
 
 
 
09fb982
0365b89
af5222f
 
 
 
 
 
 
 
 
 
 
 
33a7181
 
 
ee5d717
 
 
0e6ea54
 
 
6b64ae6
 
 
e764428
 
 
1bd71fd
 
 
24d18e2
 
 
874fa37
 
 
275a184
 
 
4bbbdee
 
 
5f75f1c
 
 
8f000b6
 
 
09fb982
 
0365b89
 
09fb982
0365b89
09fb982
0365b89
 
 
09fb982
0365b89
09fb982
0365b89
09fb982
0365b89
09fb982
0365b89
09fb982
0365b89
09fb982
0365b89
09fb982
0365b89
09fb982
0365b89
09fb982
0365b89
 
 
 
 
 
 
 
 
 
09fb982
0365b89
09fb982
0365b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fb982
 
0365b89
09fb982
0365b89
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-finetuned-squad_v2
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: SQuAD v2
      type: squad_v2
      split: validation
    metrics:
    - type: exact
      value: 100.0
      name: Exact
    - type: f1
      value: 100.0
      name: F1
    - type: total
      value: 2
      name: Total
    - type: HasAns_exact
      value: 100.0
      name: Hasans_exact
    - type: HasAns_f1
      value: 100.0
      name: Hasans_f1
    - type: HasAns_total
      value: 2
      name: Hasans_total
    - type: best_exact
      value: 100.0
      name: Best_exact
    - type: best_exact_thresh
      value: 0.9603068232536316
      name: Best_exact_thresh
    - type: best_f1
      value: 100.0
      name: Best_f1
    - type: best_f1_thresh
      value: 0.9603068232536316
      name: Best_f1_thresh
    - type: total_time_in_seconds
      value: 0.034005987999989884
      name: Total_time_in_seconds
    - type: samples_per_second
      value: 58.813171374423675
      name: Samples_per_second
    - type: latency_in_seconds
      value: 0.017002993999994942
      name: Latency_in_seconds
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-finetuned-squad_v2

This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8582

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9129        | 0.2   | 100  | 1.4700          |
| 1.4395        | 0.39  | 200  | 1.2407          |
| 1.2356        | 0.59  | 300  | 1.0325          |
| 1.1284        | 0.78  | 400  | 0.9750          |
| 1.0821        | 0.98  | 500  | 0.9345          |
| 0.9978        | 1.18  | 600  | 0.9893          |
| 0.9697        | 1.37  | 700  | 0.9300          |
| 0.9455        | 1.57  | 800  | 0.9351          |
| 0.9322        | 1.76  | 900  | 0.9451          |
| 0.9269        | 1.96  | 1000 | 0.9064          |
| 0.9105        | 2.16  | 1100 | 0.8837          |
| 0.8805        | 2.35  | 1200 | 0.8876          |
| 0.8703        | 2.55  | 1300 | 0.9853          |
| 0.8699        | 2.75  | 1400 | 0.9235          |
| 0.8633        | 2.94  | 1500 | 0.8930          |
| 0.828         | 3.14  | 1600 | 0.8582          |
| 0.8284        | 3.33  | 1700 | 0.9203          |
| 0.8076        | 3.53  | 1800 | 0.8866          |
| 0.7805        | 3.73  | 1900 | 0.9099          |
| 0.7974        | 3.92  | 2000 | 0.8746          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1