File size: 3,352 Bytes
09fb982 0365b89 09fb982 0365b89 af5222f 33a7181 ee5d717 0e6ea54 6b64ae6 e764428 1bd71fd 24d18e2 874fa37 275a184 4bbbdee 5f75f1c 8f000b6 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 09fb982 0365b89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-finetuned-squad_v2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: SQuAD v2
type: squad_v2
split: validation
metrics:
- type: exact
value: 100.0
name: Exact
- type: f1
value: 100.0
name: F1
- type: total
value: 2
name: Total
- type: HasAns_exact
value: 100.0
name: Hasans_exact
- type: HasAns_f1
value: 100.0
name: Hasans_f1
- type: HasAns_total
value: 2
name: Hasans_total
- type: best_exact
value: 100.0
name: Best_exact
- type: best_exact_thresh
value: 0.9603068232536316
name: Best_exact_thresh
- type: best_f1
value: 100.0
name: Best_f1
- type: best_f1_thresh
value: 0.9603068232536316
name: Best_f1_thresh
- type: total_time_in_seconds
value: 0.034005987999989884
name: Total_time_in_seconds
- type: samples_per_second
value: 58.813171374423675
name: Samples_per_second
- type: latency_in_seconds
value: 0.017002993999994942
name: Latency_in_seconds
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-squad_v2
This model was trained from scratch on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8582
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.9129 | 0.2 | 100 | 1.4700 |
| 1.4395 | 0.39 | 200 | 1.2407 |
| 1.2356 | 0.59 | 300 | 1.0325 |
| 1.1284 | 0.78 | 400 | 0.9750 |
| 1.0821 | 0.98 | 500 | 0.9345 |
| 0.9978 | 1.18 | 600 | 0.9893 |
| 0.9697 | 1.37 | 700 | 0.9300 |
| 0.9455 | 1.57 | 800 | 0.9351 |
| 0.9322 | 1.76 | 900 | 0.9451 |
| 0.9269 | 1.96 | 1000 | 0.9064 |
| 0.9105 | 2.16 | 1100 | 0.8837 |
| 0.8805 | 2.35 | 1200 | 0.8876 |
| 0.8703 | 2.55 | 1300 | 0.9853 |
| 0.8699 | 2.75 | 1400 | 0.9235 |
| 0.8633 | 2.94 | 1500 | 0.8930 |
| 0.828 | 3.14 | 1600 | 0.8582 |
| 0.8284 | 3.33 | 1700 | 0.9203 |
| 0.8076 | 3.53 | 1800 | 0.8866 |
| 0.7805 | 3.73 | 1900 | 0.9099 |
| 0.7974 | 3.92 | 2000 | 0.8746 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|