jonathanagustin commited on
Commit
01ed2ed
1 Parent(s): 1f5161f

Model save

Browse files
Files changed (3) hide show
  1. README.md +48 -215
  2. trainer_state.json +6 -6
  3. training_args.bin +1 -1
README.md CHANGED
@@ -1,235 +1,68 @@
1
  ---
2
- language: en
3
- license: mit
 
 
4
  model-index:
5
- - name: roberta-finetuned
6
- results:
7
- - task:
8
- type: question-answering
9
- dataset:
10
- name: SQuAD v2
11
- type: squad_v2
12
- metrics:
13
- - type: Exact
14
- value: 37.40419439063421
15
- - type: F1
16
- value: 40.42817816263742
17
- - type: Total
18
- value: 11873
19
- - type: Hasans Exact
20
- value: 72.58771929824562
21
- - type: Hasans F1
22
- value: 78.64435886049151
23
- - type: Hasans Total
24
- value: 5928
25
- - type: Noans Exact
26
- value: 2.3212783851976453
27
- - type: Noans F1
28
- value: 2.3212783851976453
29
- - type: Noans Total
30
- value: 5945
31
- - type: Best Exact
32
- value: 50.09685841825992
33
- - type: Best Exact Thresh
34
- value: 0.0
35
- - type: Best F1
36
- value: 50.09685841825992
37
- - type: Best F1 Thresh
38
- value: 0.0
39
  ---
40
 
41
- # Model Card for Model ID
 
42
 
43
- <!-- Provide a quick summary of what the model is/does. -->
44
 
 
 
 
45
 
 
46
 
47
- ## Model Details
48
 
49
- ### Model Description
50
 
51
- <!-- Provide a longer summary of what this model is. -->
52
 
 
53
 
 
54
 
55
- - **Developed by:** [More Information Needed]
56
- - **Shared by [optional]:** [More Information Needed]
57
- - **Model type:** [More Information Needed]
58
- - **Language(s) (NLP):** en
59
- - **License:** mit
60
- - **Finetuned from model [optional]:** [More Information Needed]
61
 
62
- ### Model Sources [optional]
63
 
64
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
 
65
 
66
- - **Repository:** [More Information Needed]
67
- - **Paper [optional]:** [More Information Needed]
68
- - **Demo [optional]:** [More Information Needed]
69
 
70
- ## Uses
 
 
 
 
 
 
 
 
 
 
 
71
 
72
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
73
-
74
- ### Direct Use
75
-
76
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
77
-
78
- [More Information Needed]
79
-
80
- ### Downstream Use [optional]
81
-
82
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
83
-
84
- [More Information Needed]
85
-
86
- ### Out-of-Scope Use
87
-
88
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
89
-
90
- [More Information Needed]
91
-
92
- ## Bias, Risks, and Limitations
93
-
94
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
95
-
96
- [More Information Needed]
97
-
98
- ### Recommendations
99
-
100
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
101
-
102
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
103
-
104
- ## How to Get Started with the Model
105
-
106
- Use the code below to get started with the model.
107
-
108
- [More Information Needed]
109
-
110
- ## Training Details
111
-
112
- ### Training Data
113
-
114
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
115
-
116
- [More Information Needed]
117
-
118
- ### Training Procedure
119
-
120
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
121
-
122
- #### Preprocessing [optional]
123
-
124
- [More Information Needed]
125
-
126
-
127
- #### Training Hyperparameters
128
-
129
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
130
-
131
- #### Speeds, Sizes, Times [optional]
132
-
133
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
134
-
135
- [More Information Needed]
136
-
137
- ## Evaluation
138
-
139
- <!-- This section describes the evaluation protocols and provides the results. -->
140
-
141
- ### Testing Data, Factors & Metrics
142
-
143
- #### Testing Data
144
-
145
- <!-- This should link to a Data Card if possible. -->
146
-
147
- [More Information Needed]
148
-
149
- #### Factors
150
-
151
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
152
-
153
- [More Information Needed]
154
-
155
- #### Metrics
156
-
157
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
158
-
159
- [More Information Needed]
160
-
161
- ### Results
162
-
163
- [More Information Needed]
164
-
165
- #### Summary
166
-
167
-
168
-
169
- ## Model Examination [optional]
170
-
171
- <!-- Relevant interpretability work for the model goes here -->
172
-
173
- [More Information Needed]
174
-
175
- ## Environmental Impact
176
-
177
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
178
-
179
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
180
-
181
- - **Hardware Type:** [More Information Needed]
182
- - **Hours used:** [More Information Needed]
183
- - **Cloud Provider:** [More Information Needed]
184
- - **Compute Region:** [More Information Needed]
185
- - **Carbon Emitted:** [More Information Needed]
186
-
187
- ## Technical Specifications [optional]
188
-
189
- ### Model Architecture and Objective
190
-
191
- [More Information Needed]
192
-
193
- ### Compute Infrastructure
194
-
195
- [More Information Needed]
196
-
197
- #### Hardware
198
-
199
- [More Information Needed]
200
-
201
- #### Software
202
-
203
- [More Information Needed]
204
-
205
- ## Citation [optional]
206
-
207
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
208
-
209
- **BibTeX:**
210
-
211
- [More Information Needed]
212
-
213
- **APA:**
214
-
215
- [More Information Needed]
216
-
217
- ## Glossary [optional]
218
-
219
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
220
-
221
- [More Information Needed]
222
-
223
- ## More Information [optional]
224
-
225
- [More Information Needed]
226
-
227
- ## Model Card Authors [optional]
228
-
229
- [More Information Needed]
230
-
231
- ## Model Card Contact
232
-
233
- [More Information Needed]
234
 
 
235
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - squad_v2
6
  model-index:
7
+ - name: roberta-finetuned-squad_v2
8
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
 
14
+ # roberta-finetuned-squad_v2
15
 
16
+ This model was trained from scratch on the squad_v2 dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.9064
19
 
20
+ ## Model description
21
 
22
+ More information needed
23
 
24
+ ## Intended uses & limitations
25
 
26
+ More information needed
27
 
28
+ ## Training and evaluation data
29
 
30
+ More information needed
31
 
32
+ ## Training procedure
 
 
 
 
 
33
 
34
+ ### Training hyperparameters
35
 
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 2e-05
38
+ - train_batch_size: 256
39
+ - eval_batch_size: 256
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 4
42
+ - total_train_batch_size: 1024
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 4
46
 
47
+ ### Training results
 
 
48
 
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:-----:|:----:|:---------------:|
51
+ | 2.9129 | 0.2 | 100 | 1.4700 |
52
+ | 1.4395 | 0.39 | 200 | 1.2407 |
53
+ | 1.2356 | 0.59 | 300 | 1.0325 |
54
+ | 1.1284 | 0.78 | 400 | 0.9750 |
55
+ | 1.0821 | 0.98 | 500 | 0.9345 |
56
+ | 0.9978 | 1.18 | 600 | 0.9893 |
57
+ | 0.9697 | 1.37 | 700 | 0.9300 |
58
+ | 0.9455 | 1.57 | 800 | 0.9351 |
59
+ | 0.9322 | 1.76 | 900 | 0.9451 |
60
+ | 0.9269 | 1.96 | 1000 | 0.9064 |
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
+ ### Framework versions
64
 
65
+ - Transformers 4.34.1
66
+ - Pytorch 2.1.0+cu118
67
+ - Datasets 2.14.5
68
+ - Tokenizers 0.14.1
trainer_state.json CHANGED
@@ -153,16 +153,16 @@
153
  "step": 1000,
154
  "total_flos": 6.688961805360538e+16,
155
  "train_loss": 0.0,
156
- "train_runtime": 0.5897,
157
- "train_samples_per_second": 221400.674,
158
- "train_steps_per_second": 432.453
159
  },
160
  {
161
  "epoch": 1.96,
162
  "eval_loss": 0.9063528180122375,
163
- "eval_runtime": 17.3618,
164
- "eval_samples_per_second": 688.58,
165
- "eval_steps_per_second": 5.414,
166
  "step": 1000
167
  }
168
  ],
 
153
  "step": 1000,
154
  "total_flos": 6.688961805360538e+16,
155
  "train_loss": 0.0,
156
+ "train_runtime": 0.614,
157
+ "train_samples_per_second": 212612.275,
158
+ "train_steps_per_second": 415.287
159
  },
160
  {
161
  "epoch": 1.96,
162
  "eval_loss": 0.9063528180122375,
163
+ "eval_runtime": 17.3907,
164
+ "eval_samples_per_second": 687.437,
165
+ "eval_steps_per_second": 5.405,
166
  "step": 1000
167
  }
168
  ],
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c38402081e29ac8ee9e727b8756c0fd6650f5c2f87de20c1e0ce9d11d10ba63
3
  size 4664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1776a22620d47e79406d32e398cf9107341a37c14af882ed10b1cef99f96d914
3
  size 4664