--- tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-finetuned-squad_v2 results: - task: type: question-answering name: Question Answering dataset: name: SQuAD v2 type: squad_v2 split: validation metrics: - type: exact value: 100.0 name: Exact - type: f1 value: 100.0 name: F1 - type: total value: 2 name: Total - type: HasAns_exact value: 100.0 name: Hasans_exact - type: HasAns_f1 value: 100.0 name: Hasans_f1 - type: HasAns_total value: 2 name: Hasans_total - type: best_exact value: 100.0 name: Best_exact - type: best_exact_thresh value: 0.9603068232536316 name: Best_exact_thresh - type: best_f1 value: 100.0 name: Best_f1 - type: best_f1_thresh value: 0.9603068232536316 name: Best_f1_thresh - type: total_time_in_seconds value: 0.034005987999989884 name: Total_time_in_seconds - type: samples_per_second value: 58.813171374423675 name: Samples_per_second - type: latency_in_seconds value: 0.017002993999994942 name: Latency_in_seconds --- # roberta-finetuned-squad_v2 This model was trained from scratch on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.8582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.9129 | 0.2 | 100 | 1.4700 | | 1.4395 | 0.39 | 200 | 1.2407 | | 1.2356 | 0.59 | 300 | 1.0325 | | 1.1284 | 0.78 | 400 | 0.9750 | | 1.0821 | 0.98 | 500 | 0.9345 | | 0.9978 | 1.18 | 600 | 0.9893 | | 0.9697 | 1.37 | 700 | 0.9300 | | 0.9455 | 1.57 | 800 | 0.9351 | | 0.9322 | 1.76 | 900 | 0.9451 | | 0.9269 | 1.96 | 1000 | 0.9064 | | 0.9105 | 2.16 | 1100 | 0.8837 | | 0.8805 | 2.35 | 1200 | 0.8876 | | 0.8703 | 2.55 | 1300 | 0.9853 | | 0.8699 | 2.75 | 1400 | 0.9235 | | 0.8633 | 2.94 | 1500 | 0.8930 | | 0.828 | 3.14 | 1600 | 0.8582 | | 0.8284 | 3.33 | 1700 | 0.9203 | | 0.8076 | 3.53 | 1800 | 0.8866 | | 0.7805 | 3.73 | 1900 | 0.9099 | | 0.7974 | 3.92 | 2000 | 0.8746 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1