|
|
|
"""
|
|
Next Word Prediction using an LSTM model in PyTorch with advanced improvements.
|
|
---------------------------------------------------------------------------------
|
|
This script supports two modes:
|
|
|
|
Training Mode (with --train):
|
|
- Loads data from CSV (must contain a 'data' column)
|
|
- Trains a SentencePiece model for subword tokenization (if not already available)
|
|
- Uses SentencePiece to tokenize text and create a Dataset of (input_sequence, target) pairs
|
|
- Builds and trains an LSTM-based model enhanced with:
|
|
* Extra fully connected layer (with ReLU and dropout)
|
|
* Layer Normalization after LSTM outputs
|
|
* Label Smoothing Loss for improved regularization
|
|
* Gradient clipping, Adam optimizer with weight decay, and ReduceLROnPlateau scheduling
|
|
- Saves training/validation loss graphs
|
|
- Converts and saves the model to TorchScript for production deployment
|
|
|
|
Inference Mode (with --inference "Your sentence"):
|
|
- Loads the saved SentencePiece model and the TorchScript (or checkpoint) model
|
|
- Runs inference to predict the top 3 next words/subwords
|
|
|
|
Usage:
|
|
Training mode:
|
|
python next_word_prediction.py --data_path data.csv --train
|
|
Inference mode:
|
|
python next_word_prediction.py --inference "How do you"
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
import argparse
|
|
import logging
|
|
import random
|
|
import pickle
|
|
from collections import Counter
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from torch.nn.utils.rnn import pad_sequence
|
|
|
|
|
|
import sentencepiece as spm
|
|
|
|
|
|
PAD_TOKEN = '<PAD>'
|
|
UNK_TOKEN = '<UNK>'
|
|
|
|
|
|
|
|
logging.basicConfig(
|
|
stream=sys.stdout,
|
|
level=logging.INFO,
|
|
format='%(asctime)s - %(levelname)s - %(message)s',
|
|
datefmt='%Y-%m-%d %H:%M:%S'
|
|
)
|
|
|
|
|
|
class LabelSmoothingLoss(nn.Module):
|
|
def __init__(self, smoothing=0.1):
|
|
super(LabelSmoothingLoss, self).__init__()
|
|
self.smoothing = smoothing
|
|
|
|
def forward(self, pred, target):
|
|
confidence = 1.0 - self.smoothing
|
|
vocab_size = pred.size(1)
|
|
one_hot = torch.zeros_like(pred).scatter(1, target.unsqueeze(1), 1)
|
|
smoothed_target = one_hot * confidence + self.smoothing / (vocab_size - 1)
|
|
log_prob = torch.log_softmax(pred, dim=-1)
|
|
loss = -(smoothed_target * log_prob).sum(dim=1).mean()
|
|
return loss
|
|
|
|
|
|
def train_sentencepiece(corpus, model_prefix, vocab_size):
|
|
temp_file = "sp_temp.txt"
|
|
with open(temp_file, "w", encoding="utf-8") as f:
|
|
for sentence in corpus:
|
|
f.write(sentence.strip() + "\n")
|
|
spm.SentencePieceTrainer.train(
|
|
input=temp_file,
|
|
model_prefix=model_prefix,
|
|
vocab_size=vocab_size,
|
|
character_coverage=1.0,
|
|
model_type='unigram'
|
|
)
|
|
os.remove(temp_file)
|
|
logging.info("SentencePiece model trained and saved with prefix '%s'", model_prefix)
|
|
|
|
def load_sentencepiece_model(model_path):
|
|
sp = spm.SentencePieceProcessor()
|
|
sp.load(model_path)
|
|
logging.info("Loaded SentencePiece model from %s", model_path)
|
|
return sp
|
|
|
|
|
|
class NextWordSPDataset(Dataset):
|
|
def __init__(self, sentences, sp):
|
|
logging.info("Initializing NextWordSPDataset with %d sentences", len(sentences))
|
|
self.sp = sp
|
|
self.samples = []
|
|
self.prepare_samples(sentences)
|
|
logging.info("Total samples generated: %d", len(self.samples))
|
|
|
|
def prepare_samples(self, sentences):
|
|
for idx, sentence in enumerate(sentences):
|
|
token_ids = self.sp.encode(sentence.strip(), out_type=int)
|
|
for i in range(1, len(token_ids)):
|
|
self.samples.append((
|
|
torch.tensor(token_ids[:i], dtype=torch.long),
|
|
torch.tensor(token_ids[i], dtype=torch.long)
|
|
))
|
|
if (idx + 1) % 1000 == 0:
|
|
logging.debug("Processed %d/%d sentences", idx + 1, len(sentences))
|
|
|
|
def __len__(self):
|
|
return len(self.samples)
|
|
|
|
def __getitem__(self, idx):
|
|
return self.samples[idx]
|
|
|
|
def sp_collate_fn(batch):
|
|
inputs, targets = zip(*batch)
|
|
padded_inputs = pad_sequence(inputs, batch_first=True, padding_value=0)
|
|
targets = torch.stack(targets)
|
|
logging.debug("Batch collated: inputs shape %s, targets shape %s", padded_inputs.shape, targets.shape)
|
|
return padded_inputs, targets
|
|
|
|
|
|
class LSTMNextWordModel(nn.Module):
|
|
def __init__(self, vocab_size, embed_dim, hidden_dim, num_layers, dropout, fc_dropout=0.3):
|
|
super(LSTMNextWordModel, self).__init__()
|
|
self.embedding = nn.Embedding(vocab_size, embed_dim, padding_idx=0)
|
|
self.lstm = nn.LSTM(embed_dim, hidden_dim, num_layers=num_layers,
|
|
batch_first=True, dropout=dropout)
|
|
self.layer_norm = nn.LayerNorm(hidden_dim)
|
|
self.dropout = nn.Dropout(fc_dropout)
|
|
self.fc1 = nn.Linear(hidden_dim, hidden_dim // 2)
|
|
self.fc2 = nn.Linear(hidden_dim // 2, vocab_size)
|
|
|
|
def forward(self, x):
|
|
|
|
emb = self.embedding(x)
|
|
output, _ = self.lstm(emb)
|
|
last_output = output[:, -1, :]
|
|
norm_output = self.layer_norm(last_output)
|
|
norm_output = self.dropout(norm_output)
|
|
fc1_out = torch.relu(self.fc1(norm_output))
|
|
fc1_out = self.dropout(fc1_out)
|
|
logits = self.fc2(fc1_out)
|
|
return logits
|
|
|
|
|
|
def train_model(model, train_loader, valid_loader, optimizer, criterion, scheduler, device,
|
|
num_epochs, patience, model_save_path, clip_value=5):
|
|
best_val_loss = float('inf')
|
|
patience_counter = 0
|
|
train_losses = []
|
|
val_losses = []
|
|
logging.info("Starting training for %d epochs", num_epochs)
|
|
|
|
for epoch in range(num_epochs):
|
|
logging.info("Epoch %d started...", epoch + 1)
|
|
model.train()
|
|
total_loss = 0.0
|
|
for batch_idx, (inputs, targets) in enumerate(train_loader):
|
|
inputs = inputs.to(device)
|
|
targets = targets.to(device)
|
|
optimizer.zero_grad()
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, targets)
|
|
loss.backward()
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), clip_value)
|
|
optimizer.step()
|
|
total_loss += loss.item()
|
|
if (batch_idx + 1) % 50 == 0:
|
|
logging.debug("Epoch %d, Batch %d: Loss = %.4f", epoch + 1, batch_idx + 1, loss.item())
|
|
avg_train_loss = total_loss / len(train_loader)
|
|
train_losses.append(avg_train_loss)
|
|
logging.info("Epoch %d training completed. Avg Train Loss: %.4f", epoch + 1, avg_train_loss)
|
|
|
|
model.eval()
|
|
total_val_loss = 0.0
|
|
with torch.no_grad():
|
|
for batch_idx, (inputs, targets) in enumerate(valid_loader):
|
|
inputs = inputs.to(device)
|
|
targets = targets.to(device)
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, targets)
|
|
total_val_loss += loss.item()
|
|
if (batch_idx + 1) % 50 == 0:
|
|
logging.debug("Validation Epoch %d, Batch %d: Loss = %.4f", epoch + 1, batch_idx + 1, loss.item())
|
|
avg_val_loss = total_val_loss / len(valid_loader)
|
|
val_losses.append(avg_val_loss)
|
|
logging.info("Epoch %d validation completed. Avg Val Loss: %.4f", epoch + 1, avg_val_loss)
|
|
|
|
scheduler.step(avg_val_loss)
|
|
|
|
if avg_val_loss < best_val_loss:
|
|
best_val_loss = avg_val_loss
|
|
patience_counter = 0
|
|
torch.save(model.state_dict(), model_save_path)
|
|
logging.info("Checkpoint saved at epoch %d with Val Loss: %.4f", epoch + 1, avg_val_loss)
|
|
else:
|
|
patience_counter += 1
|
|
logging.info("No improvement in validation loss for %d consecutive epoch(s).", patience_counter)
|
|
if patience_counter >= patience:
|
|
logging.info("Early stopping triggered at epoch %d", epoch + 1)
|
|
break
|
|
|
|
plt.figure()
|
|
plt.plot(range(1, len(train_losses)+1), train_losses, label="Train Loss")
|
|
plt.plot(range(1, len(val_losses)+1), val_losses, label="Validation Loss")
|
|
plt.xlabel("Epoch")
|
|
plt.ylabel("Loss")
|
|
plt.legend()
|
|
plt.title("Training and Validation Loss")
|
|
plt.savefig("loss_graph.png")
|
|
logging.info("Loss graph saved as loss_graph.png")
|
|
|
|
return train_losses, val_losses
|
|
|
|
def predict_next_word(model, sentence, sp, device, topk=3):
|
|
"""
|
|
Given a partial sentence, uses SentencePiece to tokenize and predicts the top k next words.
|
|
"""
|
|
logging.info("Predicting top %d next words for input sentence: '%s'", topk, sentence)
|
|
model.eval()
|
|
token_ids = sp.encode(sentence.strip(), out_type=int)
|
|
logging.debug("Token IDs for prediction: %s", token_ids)
|
|
if len(token_ids) == 0:
|
|
logging.warning("No tokens found in input sentence.")
|
|
return []
|
|
input_seq = torch.tensor(token_ids, dtype=torch.long).unsqueeze(0).to(device)
|
|
with torch.no_grad():
|
|
logits = model(input_seq)
|
|
probabilities = torch.softmax(logits, dim=-1)
|
|
topk_result = torch.topk(probabilities, k=topk, dim=-1)
|
|
top_indices = topk_result.indices.squeeze(0).tolist()
|
|
predicted_pieces = [sp.id_to_piece(idx) for idx in top_indices]
|
|
cleaned_predictions = [piece.lstrip("▁") for piece in predicted_pieces]
|
|
logging.info("Predicted top %d next words/subwords: %s", topk, cleaned_predictions)
|
|
return cleaned_predictions
|
|
|
|
|
|
def main(args):
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
logging.info("Using device: %s", device)
|
|
|
|
|
|
if args.inference is not None:
|
|
logging.info("Running in inference-only mode with input: '%s'", args.inference)
|
|
if not os.path.exists(args.sp_model_path):
|
|
logging.error("SentencePiece model not found at %s. Cannot run inference.", args.sp_model_path)
|
|
return
|
|
sp = load_sentencepiece_model(args.sp_model_path)
|
|
if os.path.exists(args.scripted_model_path):
|
|
logging.info("Loading TorchScript model from %s", args.scripted_model_path)
|
|
model = torch.jit.load(args.scripted_model_path, map_location=device)
|
|
elif os.path.exists(args.model_save_path):
|
|
logging.info("Loading model checkpoint from %s", args.model_save_path)
|
|
model = LSTMNextWordModel(vocab_size=sp.get_piece_size(),
|
|
embed_dim=args.embed_dim,
|
|
hidden_dim=args.hidden_dim,
|
|
num_layers=args.num_layers,
|
|
dropout=args.dropout,
|
|
fc_dropout=0.3)
|
|
model.load_state_dict(torch.load(args.model_save_path, map_location=device))
|
|
model.to(device)
|
|
else:
|
|
logging.error("No model checkpoint found. Exiting.")
|
|
return
|
|
predictions = predict_next_word(model, args.inference, sp, device, topk=1)
|
|
logging.info("Input: '%s' -> Predicted next words: %s", args.inference, predictions)
|
|
return
|
|
|
|
|
|
logging.info("Loading data from %s...", args.data_path)
|
|
df = pd.read_csv(args.data_path)
|
|
if 'data' not in df.columns:
|
|
logging.error("CSV file must contain a 'data' column. Exiting.")
|
|
return
|
|
sentences = df['data'].tolist()
|
|
logging.info("Total sentences loaded: %d", len(sentences))
|
|
|
|
if not os.path.exists(args.sp_model_path):
|
|
logging.info("SentencePiece model not found at %s. Training new model...", args.sp_model_path)
|
|
train_sentencepiece(sentences, args.sp_model_prefix, args.vocab_size)
|
|
sp = load_sentencepiece_model(args.sp_model_path)
|
|
|
|
train_sentences = sentences[:int(len(sentences) * args.train_split)]
|
|
valid_sentences = sentences[int(len(sentences) * args.train_split):]
|
|
train_dataset = NextWordSPDataset(train_sentences, sp)
|
|
valid_dataset = NextWordSPDataset(valid_sentences, sp)
|
|
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=sp_collate_fn)
|
|
valid_loader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, collate_fn=sp_collate_fn)
|
|
logging.info("DataLoaders created: %d training batches, %d validation batches",
|
|
len(train_loader), len(valid_loader))
|
|
|
|
vocab_size = sp.get_piece_size()
|
|
model = LSTMNextWordModel(vocab_size=vocab_size,
|
|
embed_dim=args.embed_dim,
|
|
hidden_dim=args.hidden_dim,
|
|
num_layers=args.num_layers,
|
|
dropout=args.dropout,
|
|
fc_dropout=0.3)
|
|
model.to(device)
|
|
|
|
criterion = LabelSmoothingLoss(smoothing=args.label_smoothing)
|
|
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
|
|
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=1, verbose=True)
|
|
logging.info("Loss function, optimizer, and scheduler initialized.")
|
|
|
|
if args.train:
|
|
logging.info("Training mode is ON.")
|
|
if os.path.exists(args.model_save_path):
|
|
logging.info("Existing checkpoint found at %s. Loading weights...", args.model_save_path)
|
|
model.load_state_dict(torch.load(args.model_save_path, map_location=device))
|
|
else:
|
|
logging.info("No checkpoint found. Training from scratch.")
|
|
train_losses, val_losses = train_model(model, train_loader, valid_loader, optimizer, criterion,
|
|
scheduler, device, args.num_epochs, args.patience,
|
|
args.model_save_path)
|
|
scripted_model = torch.jit.script(model)
|
|
scripted_model.save(args.scripted_model_path)
|
|
logging.info("Model converted to TorchScript and saved to %s", args.scripted_model_path)
|
|
else:
|
|
logging.info("Training flag not set. Skipping training and running inference demo.")
|
|
if not os.path.exists(args.model_save_path):
|
|
logging.error("No model checkpoint found. Exiting.")
|
|
return
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Next Word Prediction using LSTM in PyTorch with SentencePiece and advanced techniques")
|
|
parser.add_argument('--data_path', type=str, default='data.csv', help="Path to CSV file with a 'data' column (required for training)")
|
|
parser.add_argument('--vocab_size', type=int, default=10000, help="Vocabulary size for SentencePiece")
|
|
parser.add_argument('--train_split', type=float, default=0.9, help="Fraction of data to use for training")
|
|
parser.add_argument('--batch_size', type=int, default=512, help="Batch size for training")
|
|
parser.add_argument('--embed_dim', type=int, default=256, help="Dimension of word embeddings")
|
|
parser.add_argument('--hidden_dim', type=int, default=256, help="Hidden dimension for LSTM")
|
|
parser.add_argument('--num_layers', type=int, default=2, help="Number of LSTM layers")
|
|
parser.add_argument('--dropout', type=float, default=0.3, help="Dropout rate in LSTM")
|
|
parser.add_argument('--learning_rate', type=float, default=0.001, help="Learning rate for optimizer")
|
|
parser.add_argument('--weight_decay', type=float, default=1e-5, help="Weight decay (L2 regularization) for optimizer")
|
|
parser.add_argument('--num_epochs', type=int, default=25, help="Number of training epochs")
|
|
parser.add_argument('--patience', type=int, default=5, help="Early stopping patience")
|
|
parser.add_argument('--label_smoothing', type=float, default=0.1, help="Label smoothing factor")
|
|
parser.add_argument('--model_save_path', type=str, default='best_model.pth', help="Path to save the best model checkpoint")
|
|
parser.add_argument('--scripted_model_path', type=str, default='best_model_scripted.pt', help="Path to save the TorchScript model")
|
|
parser.add_argument('--sp_model_prefix', type=str, default='spm', help="Prefix for SentencePiece model files")
|
|
parser.add_argument('--sp_model_path', type=str, default='spm.model', help="Path to load/save the SentencePiece model")
|
|
parser.add_argument('--seed', type=int, default=42, help="Random seed for reproducibility")
|
|
parser.add_argument('--train', action='store_true', help="Flag to enable training mode. If not set, runs inference/demo using saved checkpoint.")
|
|
parser.add_argument('--inference', type=str, default=None, help="Input sentence for inference-only mode")
|
|
|
|
args, unknown = parser.parse_known_args()
|
|
logging.info("Arguments parsed: %s", args)
|
|
main(args)
|
|
|