Upload text2sql_flant5_qlora.ipynb
Browse files- text2sql_flant5_qlora.ipynb +1492 -0
text2sql_flant5_qlora.ipynb
ADDED
@@ -0,0 +1,1492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "cadbd30d-57ce-4ef2-889f-24bd0ff06b89",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
"/workspace\n"
|
14 |
+
]
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"source": [
|
18 |
+
"!echo $PWD"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 2,
|
24 |
+
"id": "12d99875-d86b-4442-8682-b9751118d90e",
|
25 |
+
"metadata": {},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"#!pip3 install evaluate datasets bitsandbytes transformers peft rapidfuzz absl-py"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": 3,
|
34 |
+
"id": "5f167a6f-5139-46e6-afb2-a1fa4d12f3fd",
|
35 |
+
"metadata": {},
|
36 |
+
"outputs": [],
|
37 |
+
"source": [
|
38 |
+
"import time\n",
|
39 |
+
"import logging\n",
|
40 |
+
"import re\n",
|
41 |
+
"import random\n",
|
42 |
+
"import gc\n",
|
43 |
+
"import numpy as np\n",
|
44 |
+
"import pandas as pd\n",
|
45 |
+
"import torch\n",
|
46 |
+
"import evaluate\n",
|
47 |
+
"\n",
|
48 |
+
"from datasets import Dataset, DatasetDict, load_from_disk\n",
|
49 |
+
"from transformers import (\n",
|
50 |
+
" AutoModelForSeq2SeqLM,\n",
|
51 |
+
" AutoTokenizer,\n",
|
52 |
+
" TrainingArguments,\n",
|
53 |
+
" Trainer,\n",
|
54 |
+
" GenerationConfig,\n",
|
55 |
+
" BitsAndBytesConfig,\n",
|
56 |
+
")\n",
|
57 |
+
"from transformers.trainer_callback import EarlyStoppingCallback\n",
|
58 |
+
"from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 4,
|
64 |
+
"id": "53684b5e-c27e-4eb9-815e-583aa194e096",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [
|
67 |
+
{
|
68 |
+
"name": "stdout",
|
69 |
+
"output_type": "stream",
|
70 |
+
"text": [
|
71 |
+
"cuda\n"
|
72 |
+
]
|
73 |
+
}
|
74 |
+
],
|
75 |
+
"source": [
|
76 |
+
"# Enable cudnn benchmark for fixed input sizes (can speed up computation)\n",
|
77 |
+
"torch.backends.cudnn.benchmark = True\n",
|
78 |
+
"\n",
|
79 |
+
"# Set device to RTX 4090\n",
|
80 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
81 |
+
"print(device)"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 5,
|
87 |
+
"id": "a47bf3cd-752d-4d1c-9697-70098d6204fa",
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"random.seed(42)\n",
|
92 |
+
"np.random.seed(42)\n",
|
93 |
+
"torch.manual_seed(42)\n",
|
94 |
+
"if torch.cuda.is_available():\n",
|
95 |
+
" torch.cuda.manual_seed_all(42)"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": 6,
|
101 |
+
"id": "f16df21e-9797-4f78-83a1-a2943759ba55",
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [],
|
104 |
+
"source": [
|
105 |
+
"def clear_memory():\n",
|
106 |
+
" gc.collect()\n",
|
107 |
+
" torch.cuda.empty_cache()"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": 7,
|
113 |
+
"id": "196e83da-6c8c-4cd7-bd70-2598a5e2a16a",
|
114 |
+
"metadata": {},
|
115 |
+
"outputs": [],
|
116 |
+
"source": [
|
117 |
+
"logging.basicConfig(\n",
|
118 |
+
" level=logging.INFO,\n",
|
119 |
+
" format=\"%(asctime)s - %(levelname)s - %(message)s\",\n",
|
120 |
+
")\n",
|
121 |
+
"logger = logging.getLogger(__name__)"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": 8,
|
127 |
+
"id": "cea22b9f-f309-4151-81ac-37547c8feeb0",
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [],
|
130 |
+
"source": [
|
131 |
+
"def preprocess(text: str) -> str:\n",
|
132 |
+
" \"\"\"Remove extra whitespaces and newlines from a text string.\"\"\"\n",
|
133 |
+
" if not isinstance(text, str):\n",
|
134 |
+
" return \"\"\n",
|
135 |
+
" return re.sub(r'\\s+', ' ', text.replace('\\n', ' ')).strip()\n",
|
136 |
+
"\n",
|
137 |
+
"def clean_df(df, rename=None, drop=None, select=None):\n",
|
138 |
+
" \"\"\"\n",
|
139 |
+
" Clean and rename dataframe columns:\n",
|
140 |
+
" - drop: list of columns to drop\n",
|
141 |
+
" - rename: dict mapping old column names to new names\n",
|
142 |
+
" - select: list of columns to keep in final order\n",
|
143 |
+
" \"\"\"\n",
|
144 |
+
" if drop:\n",
|
145 |
+
" df = df.drop(columns=drop, errors='ignore')\n",
|
146 |
+
" if rename:\n",
|
147 |
+
" df = df.rename(columns=rename)\n",
|
148 |
+
" for col in ['query', 'context', 'response']:\n",
|
149 |
+
" if col in df.columns:\n",
|
150 |
+
" df[col] = df[col].apply(preprocess)\n",
|
151 |
+
" if select:\n",
|
152 |
+
" df = df[select]\n",
|
153 |
+
" return df"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"execution_count": 9,
|
159 |
+
"id": "d4eb82ce-1713-40b6-981d-43ce35aaa6f6",
|
160 |
+
"metadata": {},
|
161 |
+
"outputs": [
|
162 |
+
{
|
163 |
+
"name": "stderr",
|
164 |
+
"output_type": "stream",
|
165 |
+
"text": [
|
166 |
+
"2025-03-17 17:06:42,785 - INFO - Loading raw datasets from various sources...\n",
|
167 |
+
"2025-03-17 17:07:15,400 - INFO - Total rows before dropping duplicates: 490241\n",
|
168 |
+
"2025-03-17 17:07:16,852 - INFO - Total rows after dropping duplicates: 440785\n"
|
169 |
+
]
|
170 |
+
}
|
171 |
+
],
|
172 |
+
"source": [
|
173 |
+
"logger.info(\"Loading raw datasets from various sources...\")\n",
|
174 |
+
"\n",
|
175 |
+
"# Load datasets\n",
|
176 |
+
"df1 = pd.read_json(\"hf://datasets/Clinton/Text-to-sql-v1/texttosqlv2.jsonl\", lines=True)\n",
|
177 |
+
"df2 = pd.read_json(\"hf://datasets/b-mc2/sql-create-context/sql_create_context_v4.json\")\n",
|
178 |
+
"df3 = pd.read_parquet(\"hf://datasets/gretelai/synthetic_text_to_sql/synthetic_text_to_sql_train.snappy.parquet\")\n",
|
179 |
+
"df4 = pd.read_json(\"hf://datasets/knowrohit07/know_sql/know_sql_val3{ign}.json\")\n",
|
180 |
+
"\n",
|
181 |
+
"# Clean and rename columns to unify to 'query', 'context', 'response'\n",
|
182 |
+
"df1 = clean_df(df1, rename={'instruction': 'query', 'input': 'context'}, drop=['source', 'text'])\n",
|
183 |
+
"df2 = clean_df(df2, rename={'question': 'query', 'answer': 'response'})\n",
|
184 |
+
"df3 = clean_df(df3, rename={'sql_prompt': 'query', 'sql_context': 'context', 'sql': 'response'},\n",
|
185 |
+
" select=['query', 'context', 'response'])\n",
|
186 |
+
"df4 = clean_df(df4, rename={'question': 'query', 'answer': 'response'})\n",
|
187 |
+
"\n",
|
188 |
+
"# Concatenate all DataFrames\n",
|
189 |
+
"final_df = pd.concat([df1, df2, df3, df4], ignore_index=True)\n",
|
190 |
+
"logger.info(\"Total rows before dropping duplicates: %d\", len(final_df))\n",
|
191 |
+
"\n",
|
192 |
+
"# Force correct column order and drop rows with missing fields\n",
|
193 |
+
"final_df = final_df[['query', 'context', 'response']]\n",
|
194 |
+
"final_df = final_df.dropna(subset=['query', 'context', 'response'])\n",
|
195 |
+
"final_df = final_df.drop_duplicates()\n",
|
196 |
+
"logger.info(\"Total rows after dropping duplicates: %d\", len(final_df))"
|
197 |
+
]
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"cell_type": "code",
|
201 |
+
"execution_count": 10,
|
202 |
+
"id": "8446814e-5a2c-48a4-8c01-059afcf1d3c1",
|
203 |
+
"metadata": {},
|
204 |
+
"outputs": [
|
205 |
+
{
|
206 |
+
"name": "stderr",
|
207 |
+
"output_type": "stream",
|
208 |
+
"text": [
|
209 |
+
"Token indices sequence length is longer than the specified maximum sequence length for this model (1113 > 512). Running this sequence through the model will result in indexing errors\n",
|
210 |
+
"2025-03-17 17:10:43,961 - INFO - Total rows after filtering by token length (prompt <= 500 and response <= 250 tokens): 398481\n"
|
211 |
+
]
|
212 |
+
}
|
213 |
+
],
|
214 |
+
"source": [
|
215 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"google/flan-t5-base\")\n",
|
216 |
+
"\n",
|
217 |
+
"max_length_prompt = 500\n",
|
218 |
+
"max_length_response = 250\n",
|
219 |
+
"\n",
|
220 |
+
"def tokenize_length_filter(row):\n",
|
221 |
+
" start_prompt = \"Context:\\n\"\n",
|
222 |
+
" middle_prompt = \"\\n\\nQuery:\\n\"\n",
|
223 |
+
" end_prompt = \"\\n\\nResponse:\\n\"\n",
|
224 |
+
" \n",
|
225 |
+
" # Construct the prompt as used in the tokenize_function\n",
|
226 |
+
" prompt = f\"{start_prompt}{row['context']}{middle_prompt}{row['query']}{end_prompt}\"\n",
|
227 |
+
" \n",
|
228 |
+
" # Encode without truncation to get the full token count\n",
|
229 |
+
" prompt_tokens = tokenizer.encode(prompt, add_special_tokens=True, truncation=False)\n",
|
230 |
+
" response_tokens = tokenizer.encode(row['response'], add_special_tokens=True, truncation=False)\n",
|
231 |
+
" \n",
|
232 |
+
" return len(prompt_tokens) <= max_length_prompt and len(response_tokens) <= max_length_response\n",
|
233 |
+
"\n",
|
234 |
+
"final_df = final_df[final_df.apply(tokenize_length_filter, axis=1)]\n",
|
235 |
+
"logger.info(\"Total rows after filtering by token length (prompt <= %d and response <= %d tokens): %d\", \n",
|
236 |
+
" max_length_prompt, max_length_response, len(final_df))\n"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": 11,
|
242 |
+
"id": "177e1e6d-9fbc-442d-9774-5a3e5234329f",
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [
|
245 |
+
{
|
246 |
+
"name": "stderr",
|
247 |
+
"output_type": "stream",
|
248 |
+
"text": [
|
249 |
+
"2025-03-17 17:10:43,968 - INFO - Sample from filtered final_df:\n",
|
250 |
+
" query \\\n",
|
251 |
+
"0 Name the home team for carlton away team \n",
|
252 |
+
"1 what will the population of Asia be when Latin... \n",
|
253 |
+
"2 How many faculty members do we have for each g... \n",
|
254 |
+
"\n",
|
255 |
+
" context \\\n",
|
256 |
+
"0 CREATE TABLE table_name_77 ( home_team VARCHAR... \n",
|
257 |
+
"1 CREATE TABLE table_22767 ( \"Year\" real, \"World... \n",
|
258 |
+
"2 CREATE TABLE Student ( StuID INTEGER, LName VA... \n",
|
259 |
+
"\n",
|
260 |
+
" response \n",
|
261 |
+
"0 SELECT home_team FROM table_name_77 WHERE away... \n",
|
262 |
+
"1 SELECT \"Asia\" FROM table_22767 WHERE \"Latin Am... \n",
|
263 |
+
"2 SELECT Sex, COUNT(*) FROM Faculty GROUP BY Sex... \n"
|
264 |
+
]
|
265 |
+
}
|
266 |
+
],
|
267 |
+
"source": [
|
268 |
+
"logger.info(\"Sample from filtered final_df:\\n%s\", final_df.head(3))\n",
|
269 |
+
"clear_memory()"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 12,
|
275 |
+
"id": "0b639efe-ebeb-4b34-bc3f-accf776ba0da",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [
|
278 |
+
{
|
279 |
+
"name": "stderr",
|
280 |
+
"output_type": "stream",
|
281 |
+
"text": [
|
282 |
+
"2025-03-17 17:10:44,311 - INFO - Final split sizes: Train: 338708, Test: 39848, Validation: 19925\n"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"data": {
|
287 |
+
"application/vnd.jupyter.widget-view+json": {
|
288 |
+
"model_id": "11dc405cf3d54b6abc81b8eaf6742bea",
|
289 |
+
"version_major": 2,
|
290 |
+
"version_minor": 0
|
291 |
+
},
|
292 |
+
"text/plain": [
|
293 |
+
"Saving the dataset (0/1 shards): 0%| | 0/338708 [00:00<?, ? examples/s]"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
"metadata": {},
|
297 |
+
"output_type": "display_data"
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"data": {
|
301 |
+
"application/vnd.jupyter.widget-view+json": {
|
302 |
+
"model_id": "868d3a0d08874c448faac4b50dbb3685",
|
303 |
+
"version_major": 2,
|
304 |
+
"version_minor": 0
|
305 |
+
},
|
306 |
+
"text/plain": [
|
307 |
+
"Saving the dataset (0/1 shards): 0%| | 0/39848 [00:00<?, ? examples/s]"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
"metadata": {},
|
311 |
+
"output_type": "display_data"
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"data": {
|
315 |
+
"application/vnd.jupyter.widget-view+json": {
|
316 |
+
"model_id": "0370d0dd07514d5cae499ab93ca47ee8",
|
317 |
+
"version_major": 2,
|
318 |
+
"version_minor": 0
|
319 |
+
},
|
320 |
+
"text/plain": [
|
321 |
+
"Saving the dataset (0/1 shards): 0%| | 0/19925 [00:00<?, ? examples/s]"
|
322 |
+
]
|
323 |
+
},
|
324 |
+
"metadata": {},
|
325 |
+
"output_type": "display_data"
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"name": "stderr",
|
329 |
+
"output_type": "stream",
|
330 |
+
"text": [
|
331 |
+
"2025-03-17 17:10:45,869 - INFO - Merged and Saved Dataset Successfully!\n",
|
332 |
+
"2025-03-17 17:10:45,870 - INFO - Dataset summary: DatasetDict({\n",
|
333 |
+
" train: Dataset({\n",
|
334 |
+
" features: ['query', 'context', 'response'],\n",
|
335 |
+
" num_rows: 338708\n",
|
336 |
+
" })\n",
|
337 |
+
" test: Dataset({\n",
|
338 |
+
" features: ['query', 'context', 'response'],\n",
|
339 |
+
" num_rows: 39848\n",
|
340 |
+
" })\n",
|
341 |
+
" validation: Dataset({\n",
|
342 |
+
" features: ['query', 'context', 'response'],\n",
|
343 |
+
" num_rows: 19925\n",
|
344 |
+
" })\n",
|
345 |
+
"})\n"
|
346 |
+
]
|
347 |
+
}
|
348 |
+
],
|
349 |
+
"source": [
|
350 |
+
"def split_dataframe(df, train_frac=0.85, test_frac=0.1, val_frac=0.05):\n",
|
351 |
+
" n = len(df)\n",
|
352 |
+
" train_end = int(n * train_frac)\n",
|
353 |
+
" test_end = train_end + int(n * test_frac)\n",
|
354 |
+
" train_df = df.iloc[:train_end].reset_index(drop=True)\n",
|
355 |
+
" test_df = df.iloc[train_end:test_end].reset_index(drop=True)\n",
|
356 |
+
" val_df = df.iloc[test_end:].reset_index(drop=True)\n",
|
357 |
+
" return train_df, test_df, val_df\n",
|
358 |
+
"\n",
|
359 |
+
"train_df, test_df, val_df = split_dataframe(final_df)\n",
|
360 |
+
"logger.info(\"Final split sizes: Train: %d, Test: %d, Validation: %d\", len(train_df), len(test_df), len(val_df))\n",
|
361 |
+
"\n",
|
362 |
+
"# Convert splits to Hugging Face Datasets\n",
|
363 |
+
"train_dataset = Dataset.from_pandas(train_df)\n",
|
364 |
+
"test_dataset = Dataset.from_pandas(test_df)\n",
|
365 |
+
"val_dataset = Dataset.from_pandas(val_df)\n",
|
366 |
+
"\n",
|
367 |
+
"dataset = DatasetDict({\n",
|
368 |
+
" 'train': train_dataset,\n",
|
369 |
+
" 'test': test_dataset,\n",
|
370 |
+
" 'validation': val_dataset\n",
|
371 |
+
"})\n",
|
372 |
+
"\n",
|
373 |
+
"dataset.save_to_disk(\"merged_dataset\")\n",
|
374 |
+
"logger.info(\"Merged and Saved Dataset Successfully!\")\n",
|
375 |
+
"logger.info(\"Dataset summary: %s\", dataset)\n",
|
376 |
+
"clear_memory()"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"cell_type": "code",
|
381 |
+
"execution_count": 13,
|
382 |
+
"id": "9f6e1095-d72d-4e22-b20d-683f1f84544c",
|
383 |
+
"metadata": {},
|
384 |
+
"outputs": [
|
385 |
+
{
|
386 |
+
"name": "stderr",
|
387 |
+
"output_type": "stream",
|
388 |
+
"text": [
|
389 |
+
"2025-03-17 17:10:46,218 - INFO - Reloaded dataset from disk. Example from test split:\n",
|
390 |
+
"{'query': \"Show the name and type of military cyber commands in the 'Military_Cyber_Commands' table.\", 'context': \"CREATE SCHEMA IF NOT EXISTS defense_security;CREATE TABLE IF NOT EXISTS defense_security.Military_Cyber_Commands (id INT PRIMARY KEY, command_name VARCHAR(255), type VARCHAR(255));INSERT INTO defense_security.Military_Cyber_Commands (id, command_name, type) VALUES (1, 'USCYBERCOM', 'Defensive Cyber Operations'), (2, 'JTF-CND', 'Offensive Cyber Operations'), (3, '10th Fleet', 'Network Warfare');\", 'response': 'SELECT command_name, type FROM defense_security.Military_Cyber_Commands;'}\n",
|
391 |
+
"2025-03-17 17:10:46,475 - INFO - Loaded Tokenized Dataset from disk.\n",
|
392 |
+
"2025-03-17 17:10:46,477 - INFO - Final tokenized dataset splits: dict_keys(['train', 'test', 'validation'])\n",
|
393 |
+
"2025-03-17 17:10:46,483 - INFO - Sample tokenized record from train split:\n",
|
394 |
+
"{'input_ids': tensor([ 1193, 6327, 10, 205, 4386, 6048, 332, 17098, 953, 834,\n",
|
395 |
+
" 4350, 834, 4013, 41, 234, 834, 11650, 584, 4280, 28027,\n",
|
396 |
+
" 6, 550, 834, 11650, 584, 4280, 28027, 3, 61, 3,\n",
|
397 |
+
" 27569, 10, 5570, 8, 234, 372, 21, 443, 7377, 550,\n",
|
398 |
+
" 372, 16361, 10, 3, 1, 0, 0, 0, 0, 0,\n",
|
399 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
400 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
401 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
402 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
403 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
404 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
405 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
406 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
407 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
408 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
409 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
410 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
411 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
412 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
413 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
414 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
415 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
416 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
417 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
418 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
419 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
420 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
421 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
422 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
423 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
424 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
425 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
426 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
427 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
428 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
429 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
430 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
431 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
432 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
433 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
434 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
435 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
436 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
437 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
438 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
439 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
440 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
441 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
442 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
443 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
444 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
445 |
+
" 0, 0]), 'attention_mask': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
|
446 |
+
" 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,\n",
|
447 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
448 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
449 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
450 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
451 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
452 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
453 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
454 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
455 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
456 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
457 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
458 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
459 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
460 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
461 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
462 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
463 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
464 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
465 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
466 |
+
" 0, 0, 0, 0, 0, 0, 0, 0]), 'labels': tensor([ 3, 23143, 14196, 234, 834, 11650, 21680, 953, 834, 4350,\n",
|
467 |
+
" 834, 4013, 549, 17444, 427, 550, 834, 11650, 3274, 96,\n",
|
468 |
+
" 1720, 7377, 121, 1, -100, -100, -100, -100, -100, -100,\n",
|
469 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
470 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
471 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
472 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
473 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
474 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
475 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
476 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
477 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
478 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
479 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
480 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
481 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
482 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
483 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
484 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
485 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
486 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
487 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
488 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
489 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
490 |
+
" -100, -100, -100, -100, -100, -100, -100, -100, -100, -100,\n",
|
491 |
+
" -100, -100, -100, -100, -100, -100])}\n"
|
492 |
+
]
|
493 |
+
}
|
494 |
+
],
|
495 |
+
"source": [
|
496 |
+
"dataset = load_from_disk(\"merged_dataset\")\n",
|
497 |
+
"logger.info(\"Reloaded dataset from disk. Example from test split:\\n%s\", dataset['test'][0])\n",
|
498 |
+
"\n",
|
499 |
+
"model_name = \"google/flan-t5-base\"\n",
|
500 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
501 |
+
"\n",
|
502 |
+
"def tokenize_function(batch: dict) -> dict:\n",
|
503 |
+
" \"\"\"\n",
|
504 |
+
" Tokenizes a batch of examples for T5 fine-tuning.\n",
|
505 |
+
" Constructs a prompt in the format:\n",
|
506 |
+
" Context:\n",
|
507 |
+
" <context>\n",
|
508 |
+
" \n",
|
509 |
+
" Query:\n",
|
510 |
+
" <query>\n",
|
511 |
+
" \n",
|
512 |
+
" Response:\n",
|
513 |
+
" \"\"\"\n",
|
514 |
+
" start_prompt = \"Context:\\n\"\n",
|
515 |
+
" middle_prompt = \"\\n\\nQuery:\\n\"\n",
|
516 |
+
" end_prompt = \"\\n\\nResponse:\\n\"\n",
|
517 |
+
"\n",
|
518 |
+
" prompts = [\n",
|
519 |
+
" f\"{start_prompt}{ctx}{middle_prompt}{qry}{end_prompt}\"\n",
|
520 |
+
" for ctx, qry in zip(batch['context'], batch['query'])\n",
|
521 |
+
" ]\n",
|
522 |
+
"\n",
|
523 |
+
" tokenized_inputs = tokenizer(\n",
|
524 |
+
" prompts,\n",
|
525 |
+
" padding=\"max_length\",\n",
|
526 |
+
" truncation=True,\n",
|
527 |
+
" max_length=512\n",
|
528 |
+
" )\n",
|
529 |
+
" tokenized_labels = tokenizer(\n",
|
530 |
+
" batch['response'],\n",
|
531 |
+
" padding=\"max_length\",\n",
|
532 |
+
" truncation=True,\n",
|
533 |
+
" max_length=256\n",
|
534 |
+
" )\n",
|
535 |
+
" labels = [\n",
|
536 |
+
" [-100 if token == tokenizer.pad_token_id else token for token in seq]\n",
|
537 |
+
" for seq in tokenized_labels['input_ids']\n",
|
538 |
+
" ]\n",
|
539 |
+
"\n",
|
540 |
+
" batch['input_ids'] = tokenized_inputs['input_ids']\n",
|
541 |
+
" batch['attention_mask'] = tokenized_inputs['attention_mask']\n",
|
542 |
+
" batch['labels'] = labels\n",
|
543 |
+
" return batch\n",
|
544 |
+
"\n",
|
545 |
+
"try:\n",
|
546 |
+
" tokenized_datasets = load_from_disk(\"tokenized_datasets\")\n",
|
547 |
+
" logger.info(\"Loaded Tokenized Dataset from disk.\")\n",
|
548 |
+
"except Exception as e:\n",
|
549 |
+
" logger.info(\"Tokenized dataset not found. Creating a new one...\")\n",
|
550 |
+
" tokenized_datasets = dataset.map(\n",
|
551 |
+
" tokenize_function,\n",
|
552 |
+
" batched=True,\n",
|
553 |
+
" remove_columns=['query', 'context', 'response'],\n",
|
554 |
+
" num_proc=8\n",
|
555 |
+
" )\n",
|
556 |
+
" tokenized_datasets.save_to_disk(\"tokenized_datasets\")\n",
|
557 |
+
" logger.info(\"Tokenized and Saved Dataset.\")\n",
|
558 |
+
"\n",
|
559 |
+
"tokenized_datasets.set_format(\"torch\")\n",
|
560 |
+
"\n",
|
561 |
+
"logger.info(\"Final tokenized dataset splits: %s\", tokenized_datasets.keys())\n",
|
562 |
+
"logger.info(\"Sample tokenized record from train split:\\n%s\", tokenized_datasets['train'][0])"
|
563 |
+
]
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"cell_type": "code",
|
567 |
+
"execution_count": 14,
|
568 |
+
"id": "7f004e55-181c-47aa-9f3e-c7c1ceae780c",
|
569 |
+
"metadata": {},
|
570 |
+
"outputs": [
|
571 |
+
{
|
572 |
+
"name": "stdout",
|
573 |
+
"output_type": "stream",
|
574 |
+
"text": [
|
575 |
+
"----------------------------------------------------------------------------------------------------\n",
|
576 |
+
"INPUT PROMPT:\n",
|
577 |
+
"Context:\n",
|
578 |
+
"CREATE SCHEMA IF NOT EXISTS defense_security;CREATE TABLE IF NOT EXISTS defense_security.Military_Cyber_Commands (id INT PRIMARY KEY, command_name VARCHAR(255), type VARCHAR(255));INSERT INTO defense_security.Military_Cyber_Commands (id, command_name, type) VALUES (1, 'USCYBERCOM', 'Defensive Cyber Operations'), (2, 'JTF-CND', 'Offensive Cyber Operations'), (3, '10th Fleet', 'Network Warfare');\n",
|
579 |
+
"\n",
|
580 |
+
"Query:\n",
|
581 |
+
"Show the name and type of military cyber commands in the 'Military_Cyber_Commands' table.\n",
|
582 |
+
"\n",
|
583 |
+
"Response:\n",
|
584 |
+
"\n",
|
585 |
+
"----------------------------------------------------------------------------------------------------\n",
|
586 |
+
"BASELINE HUMAN ANSWER:\n",
|
587 |
+
"SELECT command_name, type FROM defense_security.Military_Cyber_Commands;\n",
|
588 |
+
"\n",
|
589 |
+
"----------------------------------------------------------------------------------------------------\n",
|
590 |
+
"MODEL GENERATION - ZERO SHOT:\n",
|
591 |
+
"USCYBERCOM, JTF-CND, Offensive Cyber Operations, 10th Fleet, Network Warfare\n"
|
592 |
+
]
|
593 |
+
}
|
594 |
+
],
|
595 |
+
"source": [
|
596 |
+
"model_name = 'google/flan-t5-base'\n",
|
597 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
598 |
+
"original_model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)\n",
|
599 |
+
"original_model = original_model.to(device)\n",
|
600 |
+
"\n",
|
601 |
+
"index = 0\n",
|
602 |
+
"query = dataset['test'][index]['query']\n",
|
603 |
+
"context = dataset['test'][index]['context']\n",
|
604 |
+
"response = dataset['test'][index]['response']\n",
|
605 |
+
"\n",
|
606 |
+
"prompt = f\"\"\"Context:\n",
|
607 |
+
"{context}\n",
|
608 |
+
"\n",
|
609 |
+
"Query:\n",
|
610 |
+
"{query}\n",
|
611 |
+
"\n",
|
612 |
+
"Response:\n",
|
613 |
+
"\"\"\"\n",
|
614 |
+
"inputs = tokenizer(prompt, return_tensors='pt').to(device)\n",
|
615 |
+
"baseline_output = tokenizer.decode(\n",
|
616 |
+
" original_model.generate(\n",
|
617 |
+
" inputs[\"input_ids\"],\n",
|
618 |
+
" max_new_tokens=200,\n",
|
619 |
+
" )[0],\n",
|
620 |
+
" skip_special_tokens=True\n",
|
621 |
+
")\n",
|
622 |
+
"dash_line = '-' * 100\n",
|
623 |
+
"print(dash_line)\n",
|
624 |
+
"print(f'INPUT PROMPT:\\n{prompt}')\n",
|
625 |
+
"print(dash_line)\n",
|
626 |
+
"print(f'BASELINE HUMAN ANSWER:\\n{response}\\n')\n",
|
627 |
+
"print(dash_line)\n",
|
628 |
+
"print(f'MODEL GENERATION - ZERO SHOT:\\n{baseline_output}')\n",
|
629 |
+
"clear_memory()"
|
630 |
+
]
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"cell_type": "code",
|
634 |
+
"execution_count": 15,
|
635 |
+
"id": "f50e56c7-98b3-42bc-9129-89f3eff802e7",
|
636 |
+
"metadata": {},
|
637 |
+
"outputs": [
|
638 |
+
{
|
639 |
+
"name": "stderr",
|
640 |
+
"output_type": "stream",
|
641 |
+
"text": [
|
642 |
+
"2025-03-17 17:10:50,413 - INFO - Attempting to load the fine-tuned model...\n",
|
643 |
+
"2025-03-17 17:10:51,949 - INFO - Fine-tuned model loaded successfully.\n"
|
644 |
+
]
|
645 |
+
}
|
646 |
+
],
|
647 |
+
"source": [
|
648 |
+
"import math\n",
|
649 |
+
"\n",
|
650 |
+
"try:\n",
|
651 |
+
" logger.info(\"Attempting to load the fine-tuned model...\")\n",
|
652 |
+
" finetuned_model = AutoModelForSeq2SeqLM.from_pretrained(\"text2sql_flant5base_finetuned\")\n",
|
653 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"google/flan-t5-base\")\n",
|
654 |
+
" finetuned_model = finetuned_model.to(device)\n",
|
655 |
+
" to_train = False\n",
|
656 |
+
" logger.info(\"Fine-tuned model loaded successfully.\")\n",
|
657 |
+
"except Exception as e:\n",
|
658 |
+
" logger.info(\"Fine-tuned model not found.\")\n",
|
659 |
+
" logger.info(\"Initializing model and tokenizer for QLORA fine-tuning...\")\n",
|
660 |
+
" to_train = True\n",
|
661 |
+
"\n",
|
662 |
+
" quant_config = BitsAndBytesConfig(\n",
|
663 |
+
" load_in_4bit=True,\n",
|
664 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
665 |
+
" bnb_4bit_use_double_quant=True,\n",
|
666 |
+
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
667 |
+
" )\n",
|
668 |
+
"\n",
|
669 |
+
" finetuned_model = AutoModelForSeq2SeqLM.from_pretrained(\n",
|
670 |
+
" model_name,\n",
|
671 |
+
" quantization_config=quant_config,\n",
|
672 |
+
" device_map=\"auto\",\n",
|
673 |
+
" torch_dtype=torch.bfloat16,\n",
|
674 |
+
" )\n",
|
675 |
+
" finetuned_model = prepare_model_for_kbit_training(finetuned_model)\n",
|
676 |
+
" \n",
|
677 |
+
" lora_config = LoraConfig(\n",
|
678 |
+
" r=32,\n",
|
679 |
+
" lora_alpha=64,\n",
|
680 |
+
" target_modules=[\"q\", \"v\"],\n",
|
681 |
+
" lora_dropout=0.1,\n",
|
682 |
+
" bias=\"none\",\n",
|
683 |
+
" task_type=\"SEQ_2_SEQ_LM\"\n",
|
684 |
+
" )\n",
|
685 |
+
" finetuned_model = get_peft_model(finetuned_model, lora_config)\n",
|
686 |
+
" tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
687 |
+
" logger.info(\"Base model loaded and prepared for QLORA fine-tuning.\")\n",
|
688 |
+
" clear_memory()\n",
|
689 |
+
"\n",
|
690 |
+
"if to_train:\n",
|
691 |
+
" output_dir = f\"./sql-training-{int(time.time())}\"\n",
|
692 |
+
" logger.info(\"Starting training. Output directory: %s\", output_dir)\n",
|
693 |
+
"\n",
|
694 |
+
" # Compute total training steps:\n",
|
695 |
+
" num_train_samples = len(tokenized_datasets[\"train\"])\n",
|
696 |
+
" per_device_train_batch_size = 64\n",
|
697 |
+
" per_device_eval_batch_size = 64\n",
|
698 |
+
" num_train_epochs = 6\n",
|
699 |
+
" # Assuming no gradient accumulation beyond the per-device batch size\n",
|
700 |
+
" total_steps = math.ceil(num_train_samples / per_device_train_batch_size) * num_train_epochs\n",
|
701 |
+
" # Set warmup steps as 10% of total steps (adjust as needed)\n",
|
702 |
+
" warmup_steps = int(total_steps * 0.1)\n",
|
703 |
+
" \n",
|
704 |
+
" logger.info(\"Total training steps: %d, Warmup steps (10%%): %d\", total_steps, warmup_steps)\n",
|
705 |
+
" \n",
|
706 |
+
" training_args = TrainingArguments(\n",
|
707 |
+
" output_dir=output_dir,\n",
|
708 |
+
" gradient_checkpointing=True,\n",
|
709 |
+
" gradient_checkpointing_kwargs={\"use_reentrant\": True},\n",
|
710 |
+
" gradient_accumulation_steps = 2,\n",
|
711 |
+
" learning_rate=2e-4,\n",
|
712 |
+
" optim=\"adamw_bnb_8bit\", # Memory-efficient optimizer\n",
|
713 |
+
" num_train_epochs=num_train_epochs,\n",
|
714 |
+
" per_device_train_batch_size=per_device_train_batch_size,\n",
|
715 |
+
" per_device_eval_batch_size=per_device_eval_batch_size,\n",
|
716 |
+
" weight_decay=0.01,\n",
|
717 |
+
" logging_steps=200, \n",
|
718 |
+
" logging_dir=f\"{output_dir}/logs\",\n",
|
719 |
+
" eval_strategy=\"epoch\", # Evaluate at the end of each epoch\n",
|
720 |
+
" save_strategy=\"epoch\", # Save the model at the end of each epoch\n",
|
721 |
+
" save_total_limit=3,\n",
|
722 |
+
" load_best_model_at_end=True,\n",
|
723 |
+
" metric_for_best_model=\"eval_loss\",\n",
|
724 |
+
" bf16=True, \n",
|
725 |
+
" warmup_ratio=0.1, # Warmup 10% of total steps\n",
|
726 |
+
" lr_scheduler_type=\"cosine\",\n",
|
727 |
+
" )\n",
|
728 |
+
" trainer = Trainer(\n",
|
729 |
+
" model=finetuned_model,\n",
|
730 |
+
" args=training_args,\n",
|
731 |
+
" train_dataset=tokenized_datasets[\"train\"],\n",
|
732 |
+
" eval_dataset=tokenized_datasets[\"validation\"],\n",
|
733 |
+
" callbacks=[EarlyStoppingCallback(early_stopping_patience=2)],\n",
|
734 |
+
" )\n",
|
735 |
+
" logger.info(\"Beginning fine-tuning...\")\n",
|
736 |
+
" trainer.train()\n",
|
737 |
+
" logger.info(\"Training completed.\")\n",
|
738 |
+
" save_path = \"text2sql_flant5base_finetuned\"\n",
|
739 |
+
" finetuned_model.save_pretrained(save_path)\n",
|
740 |
+
" logger.info(\"Model saved to %s\", save_path)\n",
|
741 |
+
" clear_memory()"
|
742 |
+
]
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"cell_type": "code",
|
746 |
+
"execution_count": 16,
|
747 |
+
"id": "f364eb6b-56cb-4533-8ef6-b5e7f56895aa",
|
748 |
+
"metadata": {},
|
749 |
+
"outputs": [
|
750 |
+
{
|
751 |
+
"name": "stderr",
|
752 |
+
"output_type": "stream",
|
753 |
+
"text": [
|
754 |
+
"2025-03-17 17:10:51,987 - INFO - Running inference on 5 examples (displaying real responses).\n"
|
755 |
+
]
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"name": "stdout",
|
759 |
+
"output_type": "stream",
|
760 |
+
"text": [
|
761 |
+
"\n",
|
762 |
+
"====================================================================================================\n",
|
763 |
+
"----------------------------------------------------------------------------------------------------\n",
|
764 |
+
"Example 1\n",
|
765 |
+
"----------------------------------------------------------------------------------------------------\n",
|
766 |
+
"INPUT PROMPT:\n",
|
767 |
+
"Context:\n",
|
768 |
+
"CREATE SCHEMA IF NOT EXISTS defense_security;CREATE TABLE IF NOT EXISTS defense_security.Military_Cyber_Commands (id INT PRIMARY KEY, command_name VARCHAR(255), type VARCHAR(255));INSERT INTO defense_security.Military_Cyber_Commands (id, command_name, type) VALUES (1, 'USCYBERCOM', 'Defensive Cyber Operations'), (2, 'JTF-CND', 'Offensive Cyber Operations'), (3, '10th Fleet', 'Network Warfare');\n",
|
769 |
+
"\n",
|
770 |
+
"Query:\n",
|
771 |
+
"Show the name and type of military cyber commands in the 'Military_Cyber_Commands' table.\n",
|
772 |
+
"\n",
|
773 |
+
"Response:\n",
|
774 |
+
"\n",
|
775 |
+
"----------------------------------------------------------------------------------------------------\n",
|
776 |
+
"HUMAN RESPONSE:\n",
|
777 |
+
"SELECT command_name, type FROM defense_security.Military_Cyber_Commands;\n",
|
778 |
+
"----------------------------------------------------------------------------------------------------\n",
|
779 |
+
"ORIGINAL MODEL OUTPUT:\n",
|
780 |
+
"USCYBERCOM, JTF-CND, Offensive Cyber Operations, 10th Fleet, Network Warfare\n",
|
781 |
+
"----------------------------------------------------------------------------------------------------\n",
|
782 |
+
"FINE-TUNED MODEL OUTPUT:\n",
|
783 |
+
"SELECT command_name, type FROM defense_security.Military_Cyber_Commands;\n",
|
784 |
+
"====================================================================================================\n",
|
785 |
+
"\n",
|
786 |
+
"----------------------------------------------------------------------------------------------------\n",
|
787 |
+
"Example 2\n",
|
788 |
+
"----------------------------------------------------------------------------------------------------\n",
|
789 |
+
"INPUT PROMPT:\n",
|
790 |
+
"Context:\n",
|
791 |
+
"CREATE TABLE incidents (id INT, cause VARCHAR(255), cost INT, date DATE); INSERT INTO incidents (id, cause, cost, date) VALUES (1, 'insider threat', 10000, '2022-01-01'); INSERT INTO incidents (id, cause, cost, date) VALUES (2, 'phishing', 5000, '2022-01-02');\n",
|
792 |
+
"\n",
|
793 |
+
"Query:\n",
|
794 |
+
"Find the total cost of all security incidents caused by insider threats in the last 6 months\n",
|
795 |
+
"\n",
|
796 |
+
"Response:\n",
|
797 |
+
"\n",
|
798 |
+
"----------------------------------------------------------------------------------------------------\n",
|
799 |
+
"HUMAN RESPONSE:\n",
|
800 |
+
"SELECT SUM(cost) FROM incidents WHERE cause = 'insider threat' AND date >= DATE_SUB(CURRENT_DATE, INTERVAL 6 MONTH);\n",
|
801 |
+
"----------------------------------------------------------------------------------------------------\n",
|
802 |
+
"ORIGINAL MODEL OUTPUT:\n",
|
803 |
+
"5000\n",
|
804 |
+
"----------------------------------------------------------------------------------------------------\n",
|
805 |
+
"FINE-TUNED MODEL OUTPUT:\n",
|
806 |
+
"SELECT SUM(cost) FROM incidents WHERE cause = 'insider threat' AND date >= DATE_SUB(CURRENT_DATE, INTERVAL 6 MONTH);\n",
|
807 |
+
"====================================================================================================\n",
|
808 |
+
"\n",
|
809 |
+
"----------------------------------------------------------------------------------------------------\n",
|
810 |
+
"Example 3\n",
|
811 |
+
"----------------------------------------------------------------------------------------------------\n",
|
812 |
+
"INPUT PROMPT:\n",
|
813 |
+
"Context:\n",
|
814 |
+
"CREATE TABLE libraries (name VARCHAR(255), state VARCHAR(255), population DECIMAL(10,2), libraries DECIMAL(5,2)); INSERT INTO libraries (name, state, population, libraries) VALUES ('Library1', 'California', 39512223, 3154), ('Library2', 'Texas', 29528404, 2212), ('Library3', 'Florida', 21644287, 1835);\n",
|
815 |
+
"\n",
|
816 |
+
"Query:\n",
|
817 |
+
"Show the top 3 states with the most public libraries per capita.\n",
|
818 |
+
"\n",
|
819 |
+
"Response:\n",
|
820 |
+
"\n",
|
821 |
+
"----------------------------------------------------------------------------------------------------\n",
|
822 |
+
"HUMAN RESPONSE:\n",
|
823 |
+
"SELECT state, (libraries / population) AS libraries_per_capita FROM libraries ORDER BY libraries_per_capita DESC LIMIT 3;\n",
|
824 |
+
"----------------------------------------------------------------------------------------------------\n",
|
825 |
+
"ORIGINAL MODEL OUTPUT:\n",
|
826 |
+
"California, 39512223, 3154\n",
|
827 |
+
"----------------------------------------------------------------------------------------------------\n",
|
828 |
+
"FINE-TUNED MODEL OUTPUT:\n",
|
829 |
+
"SELECT state, population, RANK() OVER (ORDER BY population DESC) as rank FROM libraries GROUP BY state ORDER BY rank DESC LIMIT 3;\n",
|
830 |
+
"====================================================================================================\n",
|
831 |
+
"\n",
|
832 |
+
"----------------------------------------------------------------------------------------------------\n",
|
833 |
+
"Example 4\n",
|
834 |
+
"----------------------------------------------------------------------------------------------------\n",
|
835 |
+
"INPUT PROMPT:\n",
|
836 |
+
"Context:\n",
|
837 |
+
"CREATE TABLE users (id INT, location VARCHAR(50)); CREATE TABLE posts (id INT, user_id INT, created_at DATETIME);\n",
|
838 |
+
"\n",
|
839 |
+
"Query:\n",
|
840 |
+
"What is the total number of posts made by users located in Australia, in the last month?\n",
|
841 |
+
"\n",
|
842 |
+
"Response:\n",
|
843 |
+
"\n",
|
844 |
+
"----------------------------------------------------------------------------------------------------\n",
|
845 |
+
"HUMAN RESPONSE:\n",
|
846 |
+
"SELECT COUNT(posts.id) FROM posts INNER JOIN users ON posts.user_id = users.id WHERE users.location = 'Australia' AND posts.created_at >= DATE_SUB(NOW(), INTERVAL 1 MONTH);\n",
|
847 |
+
"----------------------------------------------------------------------------------------------------\n",
|
848 |
+
"ORIGINAL MODEL OUTPUT:\n",
|
849 |
+
"INT users created a total of 50 posts in Australia in the last month.\n",
|
850 |
+
"----------------------------------------------------------------------------------------------------\n",
|
851 |
+
"FINE-TUNED MODEL OUTPUT:\n",
|
852 |
+
"SELECT COUNT(*) FROM posts p JOIN users u ON p.user_id = u.id WHERE u.location = 'Australia' AND p.created_at >= DATE_SUB(CURRENT_DATE, INTERVAL 1 MONTH);\n",
|
853 |
+
"====================================================================================================\n",
|
854 |
+
"\n"
|
855 |
+
]
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"name": "stderr",
|
859 |
+
"output_type": "stream",
|
860 |
+
"text": [
|
861 |
+
"2025-03-17 17:11:00,034 - INFO - Starting evaluation on the full test set using batching.\n"
|
862 |
+
]
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"name": "stdout",
|
866 |
+
"output_type": "stream",
|
867 |
+
"text": [
|
868 |
+
"----------------------------------------------------------------------------------------------------\n",
|
869 |
+
"Example 5\n",
|
870 |
+
"----------------------------------------------------------------------------------------------------\n",
|
871 |
+
"INPUT PROMPT:\n",
|
872 |
+
"Context:\n",
|
873 |
+
"CREATE TABLE WindFarms (FarmID INT, FarmName VARCHAR(255), Capacity DECIMAL(5,2), Country VARCHAR(255)); INSERT INTO WindFarms (FarmID, FarmName, Capacity, Country) VALUES (1, 'WindFarm1', 150, 'USA'), (2, 'WindFarm2', 200, 'Canada'), (3, 'WindFarm3', 120, 'Mexico');\n",
|
874 |
+
"\n",
|
875 |
+
"Query:\n",
|
876 |
+
"List the total installed capacity of wind farms in the WindEnergy schema for each country?\n",
|
877 |
+
"\n",
|
878 |
+
"Response:\n",
|
879 |
+
"\n",
|
880 |
+
"----------------------------------------------------------------------------------------------------\n",
|
881 |
+
"HUMAN RESPONSE:\n",
|
882 |
+
"SELECT Country, SUM(Capacity) as TotalCapacity FROM WindFarms GROUP BY Country;\n",
|
883 |
+
"----------------------------------------------------------------------------------------------------\n",
|
884 |
+
"ORIGINAL MODEL OUTPUT:\n",
|
885 |
+
"1, 150, USA, (2, 200, Canada, 3), 120, Mexico\n",
|
886 |
+
"----------------------------------------------------------------------------------------------------\n",
|
887 |
+
"FINE-TUNED MODEL OUTPUT:\n",
|
888 |
+
"SELECT Country, SUM(Capacity) FROM WindFarms GROUP BY Country;\n",
|
889 |
+
"====================================================================================================\n",
|
890 |
+
"\n"
|
891 |
+
]
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"name": "stderr",
|
895 |
+
"output_type": "stream",
|
896 |
+
"text": [
|
897 |
+
"2025-03-17 18:28:59,727 - INFO - Full test set comparison (first 5 rows):\n",
|
898 |
+
" Human Response \\\n",
|
899 |
+
"0 SELECT command_name, type FROM defense_securit... \n",
|
900 |
+
"1 SELECT SUM(cost) FROM incidents WHERE cause = ... \n",
|
901 |
+
"2 SELECT state, (libraries / population) AS libr... \n",
|
902 |
+
"3 SELECT COUNT(posts.id) FROM posts INNER JOIN u... \n",
|
903 |
+
"4 SELECT Country, SUM(Capacity) as TotalCapacity... \n",
|
904 |
+
"\n",
|
905 |
+
" Original Model Output \\\n",
|
906 |
+
"0 USCYBERCOM, JTF-CND, offensive Cyber operation... \n",
|
907 |
+
"1 t = t. \n",
|
908 |
+
"2 California \n",
|
909 |
+
"3 The total number of users in Australia is 50. \n",
|
910 |
+
"4 a \n",
|
911 |
+
"\n",
|
912 |
+
" Fine-Tuned Model Output \n",
|
913 |
+
"0 SELECT command_name, type FROM military_cyber_... \n",
|
914 |
+
"1 SELECT SUM(cost) FROM incidents WHERE cause = ... \n",
|
915 |
+
"2 SELECT state, t.population, t.tut FROM librari... \n",
|
916 |
+
"3 SELECT COUNT(*) FROM posts WHERE CUTS(CUTS.id,... \n",
|
917 |
+
"4 SELECT Country, SUM(Capacity) FROM WindFarms G... \n"
|
918 |
+
]
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"name": "stdout",
|
922 |
+
"output_type": "stream",
|
923 |
+
"text": [
|
924 |
+
"\n",
|
925 |
+
"Full Test Set Comparison (First 5 Rows):\n",
|
926 |
+
" Human Response Original Model Output Fine-Tuned Model Output\n",
|
927 |
+
" SELECT command_name, type FROM defense_security.Military_Cyber_Commands; USCYBERCOM, JTF-CND, offensive Cyber operations, 10th Fleet, Network Warfare SELECT command_name, type FROM military_cyber_Commands;\n",
|
928 |
+
" SELECT SUM(cost) FROM incidents WHERE cause = 'insider threat' AND date >= DATE_SUB(CURRENT_DATE, INTERVAL 6 MONTH); t = t. SELECT SUM(cost) FROM incidents WHERE cause = 'insider threat' AND date >= DATE_SUB(CURRENT_DATE, INTERVAL 6 MONTH);\n",
|
929 |
+
" SELECT state, (libraries / population) AS libraries_per_capita FROM libraries ORDER BY libraries_per_capita DESC LIMIT 3; California SELECT state, t.population, t.tut FROM libraries t JOIN t ON t.state = t.state GROUP BY state ORDER BY t.tut DESC LIMIT 3;\n",
|
930 |
+
"SELECT COUNT(posts.id) FROM posts INNER JOIN users ON posts.user_id = users.id WHERE users.location = 'Australia' AND posts.created_at >= DATE_SUB(NOW(), INTERVAL 1 MONTH); The total number of users in Australia is 50. SELECT COUNT(*) FROM posts WHERE CUTS(CUTS.id, CUTS.created_at) = CUTS.id AND CUTS.id = CUTS.id WHERE CUTS.location = 'Australia' AND CUTS.created_at >= DATE_SUB(CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CUTS.CU\n",
|
931 |
+
" SELECT Country, SUM(Capacity) as TotalCapacity FROM WindFarms GROUP BY Country; a SELECT Country, SUM(Capacity) FROM WindFarms GROUP BY Country;\n"
|
932 |
+
]
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"data": {
|
936 |
+
"application/vnd.jupyter.widget-view+json": {
|
937 |
+
"model_id": "fb9a4b84525845e78668fbb5472ac4c8",
|
938 |
+
"version_major": 2,
|
939 |
+
"version_minor": 0
|
940 |
+
},
|
941 |
+
"text/plain": [
|
942 |
+
"Downloading builder script: 0%| | 0.00/5.94k [00:00<?, ?B/s]"
|
943 |
+
]
|
944 |
+
},
|
945 |
+
"metadata": {},
|
946 |
+
"output_type": "display_data"
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"data": {
|
950 |
+
"application/vnd.jupyter.widget-view+json": {
|
951 |
+
"model_id": "5a92eb8c1607450d8babbce26891eb97",
|
952 |
+
"version_major": 2,
|
953 |
+
"version_minor": 0
|
954 |
+
},
|
955 |
+
"text/plain": [
|
956 |
+
"Downloading extra modules: 0%| | 0.00/1.55k [00:00<?, ?B/s]"
|
957 |
+
]
|
958 |
+
},
|
959 |
+
"metadata": {},
|
960 |
+
"output_type": "display_data"
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"data": {
|
964 |
+
"application/vnd.jupyter.widget-view+json": {
|
965 |
+
"model_id": "e5b5b1034f354abfbdfc46f0ff2b9349",
|
966 |
+
"version_major": 2,
|
967 |
+
"version_minor": 0
|
968 |
+
},
|
969 |
+
"text/plain": [
|
970 |
+
"Downloading extra modules: 0%| | 0.00/3.34k [00:00<?, ?B/s]"
|
971 |
+
]
|
972 |
+
},
|
973 |
+
"metadata": {},
|
974 |
+
"output_type": "display_data"
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"name": "stderr",
|
978 |
+
"output_type": "stream",
|
979 |
+
"text": [
|
980 |
+
"2025-03-17 18:29:02,580 - INFO - Using default tokenizer.\n",
|
981 |
+
"2025-03-17 18:30:27,253 - INFO - Using default tokenizer.\n"
|
982 |
+
]
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"name": "stdout",
|
986 |
+
"output_type": "stream",
|
987 |
+
"text": [
|
988 |
+
"\n",
|
989 |
+
"====================================================================================================\n",
|
990 |
+
"Evaluation Metrics:\n",
|
991 |
+
"====================================================================================================\n",
|
992 |
+
"ORIGINAL MODEL:\n",
|
993 |
+
" ROUGE: {'rouge1': np.float64(0.033688028857640176), 'rouge2': np.float64(0.008171862977966522), 'rougeL': np.float64(0.030557406905046474), 'rougeLsum': np.float64(0.030592110084298876)}\n",
|
994 |
+
" BLEU: {'bleu': 0.0036692781190090368, 'precisions': [0.02284408025462027, 0.004200643881640979, 0.002134841269783046, 0.0008848453895992066], 'brevity_penalty': 1.0, 'length_ratio': 1.1809102409373358, 'translation_length': 1421725, 'reference_length': 1203923}\n",
|
995 |
+
" Fuzzy Match Score: 11.31%\n",
|
996 |
+
" Exact Match Accuracy: 0.00%\n",
|
997 |
+
"\n",
|
998 |
+
"FINE-TUNED MODEL:\n",
|
999 |
+
" ROUGE: {'rouge1': np.float64(0.6914345907518044), 'rouge2': np.float64(0.5453255406268581), 'rougeL': np.float64(0.6642891642898592), 'rougeLsum': np.float64(0.6642865716725223)}\n",
|
1000 |
+
" BLEU: {'bleu': 0.31698443630421885, 'precisions': [0.46303833317311294, 0.34558772459086096, 0.2792686360724928, 0.2259198229483191], 'brevity_penalty': 1.0, 'length_ratio': 1.4083799379196178, 'translation_length': 1695581, 'reference_length': 1203923}\n",
|
1001 |
+
" Fuzzy Match Score: 81.98%\n",
|
1002 |
+
" Exact Match Accuracy: 16.39%\n",
|
1003 |
+
"====================================================================================================\n"
|
1004 |
+
]
|
1005 |
+
}
|
1006 |
+
],
|
1007 |
+
"source": [
|
1008 |
+
"from rapidfuzz import fuzz\n",
|
1009 |
+
"import pandas as pd\n",
|
1010 |
+
"import re\n",
|
1011 |
+
"import evaluate\n",
|
1012 |
+
"\n",
|
1013 |
+
"# --- Helper Functions for SQL Normalization and Exact Match ---\n",
|
1014 |
+
"def normalize_sql(sql):\n",
|
1015 |
+
" \"\"\"Normalize SQL by stripping whitespace and lowercasing.\"\"\"\n",
|
1016 |
+
" return \" \".join(sql.strip().lower().split())\n",
|
1017 |
+
"\n",
|
1018 |
+
"def compute_exact_match(predictions, references):\n",
|
1019 |
+
" \"\"\"Computes the exact match accuracy after normalization.\"\"\"\n",
|
1020 |
+
" matches = sum(1 for pred, ref in zip(predictions, references)\n",
|
1021 |
+
" if normalize_sql(pred) == normalize_sql(ref))\n",
|
1022 |
+
" return (matches / len(predictions)) * 100 if predictions else 0\n",
|
1023 |
+
"\n",
|
1024 |
+
"def compute_fuzzy_match(predictions, references):\n",
|
1025 |
+
" \"\"\"Computes a soft matching score using token_set_ratio from rapidfuzz.\"\"\"\n",
|
1026 |
+
" scores = [fuzz.token_set_ratio(pred, ref) for pred, ref in zip(predictions, references)]\n",
|
1027 |
+
" return sum(scores) / len(scores) if scores else 0\n",
|
1028 |
+
"\n",
|
1029 |
+
"# --- Part A: Inference on 5 Examples with Real Responses (unchanged) ---\n",
|
1030 |
+
"logger.info(\"Running inference on 5 examples (displaying real responses).\")\n",
|
1031 |
+
"\n",
|
1032 |
+
"num_examples = 5\n",
|
1033 |
+
"sample_queries = dataset[\"test\"][:num_examples][\"query\"]\n",
|
1034 |
+
"sample_contexts = dataset[\"test\"][:num_examples][\"context\"]\n",
|
1035 |
+
"sample_human_responses = dataset[\"test\"][:num_examples][\"response\"]\n",
|
1036 |
+
"\n",
|
1037 |
+
"print(\"\\n\" + \"=\"*100)\n",
|
1038 |
+
"for idx in range(num_examples):\n",
|
1039 |
+
" prompt = f\"\"\"Context:\n",
|
1040 |
+
"{sample_contexts[idx]}\n",
|
1041 |
+
"\n",
|
1042 |
+
"Query:\n",
|
1043 |
+
"{sample_queries[idx]}\n",
|
1044 |
+
"\n",
|
1045 |
+
"Response:\n",
|
1046 |
+
"\"\"\"\n",
|
1047 |
+
" inputs = tokenizer(prompt, return_tensors=\"pt\").to(device)\n",
|
1048 |
+
" \n",
|
1049 |
+
" # Generate outputs with both models using keyword arguments\n",
|
1050 |
+
" orig_out_ids = original_model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=200)\n",
|
1051 |
+
" finetuned_out_ids = finetuned_model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=200)\n",
|
1052 |
+
" \n",
|
1053 |
+
" orig_text = tokenizer.decode(orig_out_ids[0], skip_special_tokens=True)\n",
|
1054 |
+
" finetuned_text = tokenizer.decode(finetuned_out_ids[0], skip_special_tokens=True)\n",
|
1055 |
+
" \n",
|
1056 |
+
" print(\"-\" * 100)\n",
|
1057 |
+
" print(f\"Example {idx+1}\")\n",
|
1058 |
+
" print(\"-\" * 100)\n",
|
1059 |
+
" print(\"INPUT PROMPT:\")\n",
|
1060 |
+
" print(prompt)\n",
|
1061 |
+
" print(\"-\" * 100)\n",
|
1062 |
+
" print(\"HUMAN RESPONSE:\")\n",
|
1063 |
+
" print(sample_human_responses[idx])\n",
|
1064 |
+
" print(\"-\" * 100)\n",
|
1065 |
+
" print(\"ORIGINAL MODEL OUTPUT:\")\n",
|
1066 |
+
" print(orig_text)\n",
|
1067 |
+
" print(\"-\" * 100)\n",
|
1068 |
+
" print(\"FINE-TUNED MODEL OUTPUT:\")\n",
|
1069 |
+
" print(finetuned_text)\n",
|
1070 |
+
" print(\"=\" * 100 + \"\\n\")\n",
|
1071 |
+
" clear_memory()\n",
|
1072 |
+
"\n",
|
1073 |
+
"# --- Part B: Evaluation on Full Test Set with Batching (Optimized) ---\n",
|
1074 |
+
"logger.info(\"Starting evaluation on the full test set using batching.\")\n",
|
1075 |
+
"\n",
|
1076 |
+
"all_human_responses = []\n",
|
1077 |
+
"all_original_responses = []\n",
|
1078 |
+
"all_finetuned_responses = []\n",
|
1079 |
+
"\n",
|
1080 |
+
"batch_size = 128 # Adjust batch size based on your GPU memory\n",
|
1081 |
+
"test_dataset = dataset[\"test\"]\n",
|
1082 |
+
"\n",
|
1083 |
+
"for i in range(0, len(test_dataset), batch_size):\n",
|
1084 |
+
" # Slicing the dataset returns a dict of lists\n",
|
1085 |
+
" batch = test_dataset[i:i+batch_size]\n",
|
1086 |
+
" \n",
|
1087 |
+
" # Construct prompts for each example in the batch by iterating over indices\n",
|
1088 |
+
" prompts = [\n",
|
1089 |
+
" f\"Context:\\n{batch['context'][j]}\\n\\nQuery:\\n{batch['query'][j]}\\n\\nResponse:\"\n",
|
1090 |
+
" for j in range(len(batch[\"context\"]))\n",
|
1091 |
+
" ]\n",
|
1092 |
+
" \n",
|
1093 |
+
" # Extend human responses for each example\n",
|
1094 |
+
" all_human_responses.extend(batch[\"response\"])\n",
|
1095 |
+
" \n",
|
1096 |
+
" # Tokenize the batch of prompts\n",
|
1097 |
+
" inputs = tokenizer(prompts, return_tensors=\"pt\", padding=True, truncation=True).to(device)\n",
|
1098 |
+
" \n",
|
1099 |
+
" # Generate outputs with both models for the batch\n",
|
1100 |
+
" orig_ids = original_model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=300)\n",
|
1101 |
+
" finetuned_ids = finetuned_model.generate(input_ids=inputs[\"input_ids\"], max_new_tokens=300)\n",
|
1102 |
+
" \n",
|
1103 |
+
" # Decode each sample in the batch\n",
|
1104 |
+
" orig_texts = [tokenizer.decode(ids, skip_special_tokens=True) for ids in orig_ids]\n",
|
1105 |
+
" finetuned_texts = [tokenizer.decode(ids, skip_special_tokens=True) for ids in finetuned_ids]\n",
|
1106 |
+
" \n",
|
1107 |
+
" all_original_responses.extend(orig_texts)\n",
|
1108 |
+
" all_finetuned_responses.extend(finetuned_texts)\n",
|
1109 |
+
" clear_memory()\n",
|
1110 |
+
"\n",
|
1111 |
+
"# Create a DataFrame for a quick comparison of results\n",
|
1112 |
+
"zipped_all = list(zip(all_human_responses, all_original_responses, all_finetuned_responses))\n",
|
1113 |
+
"df_full = pd.DataFrame(zipped_all, columns=[\"Human Response\", \"Original Model Output\", \"Fine-Tuned Model Output\"])\n",
|
1114 |
+
"logger.info(\"Full test set comparison (first 5 rows):\\n%s\", df_full.head())\n",
|
1115 |
+
"print(\"\\nFull Test Set Comparison (First 5 Rows):\")\n",
|
1116 |
+
"print(df_full.head().to_string(index=False))\n",
|
1117 |
+
"clear_memory()\n",
|
1118 |
+
"\n",
|
1119 |
+
"# --- Compute Evaluation Metrics ---\n",
|
1120 |
+
"# Load evaluation libraries\n",
|
1121 |
+
"rouge = evaluate.load(\"rouge\")\n",
|
1122 |
+
"bleu = evaluate.load(\"bleu\")\n",
|
1123 |
+
"\n",
|
1124 |
+
"# Compute metrics for the original (non-fine-tuned) model\n",
|
1125 |
+
"orig_rouge = rouge.compute(\n",
|
1126 |
+
" predictions=all_original_responses,\n",
|
1127 |
+
" references=all_human_responses,\n",
|
1128 |
+
" use_aggregator=True,\n",
|
1129 |
+
" use_stemmer=True,\n",
|
1130 |
+
")\n",
|
1131 |
+
"orig_bleu = bleu.compute(\n",
|
1132 |
+
" predictions=all_original_responses,\n",
|
1133 |
+
" references=[[ref] for ref in all_human_responses]\n",
|
1134 |
+
")\n",
|
1135 |
+
"orig_fuzzy = compute_fuzzy_match(all_original_responses, all_human_responses)\n",
|
1136 |
+
"orig_exact = compute_exact_match(all_original_responses, all_human_responses)\n",
|
1137 |
+
"\n",
|
1138 |
+
"# Compute metrics for the fine-tuned model\n",
|
1139 |
+
"finetuned_rouge = rouge.compute(\n",
|
1140 |
+
" predictions=all_finetuned_responses,\n",
|
1141 |
+
" references=all_human_responses,\n",
|
1142 |
+
" use_aggregator=True,\n",
|
1143 |
+
" use_stemmer=True,\n",
|
1144 |
+
")\n",
|
1145 |
+
"finetuned_bleu = bleu.compute(\n",
|
1146 |
+
" predictions=all_finetuned_responses,\n",
|
1147 |
+
" references=[[ref] for ref in all_human_responses]\n",
|
1148 |
+
")\n",
|
1149 |
+
"finetuned_fuzzy = compute_fuzzy_match(all_finetuned_responses, all_human_responses)\n",
|
1150 |
+
"finetuned_exact = compute_exact_match(all_finetuned_responses, all_human_responses)\n",
|
1151 |
+
"\n",
|
1152 |
+
"print(\"\\n\" + \"=\"*100)\n",
|
1153 |
+
"print(\"Evaluation Metrics:\")\n",
|
1154 |
+
"print(\"=\"*100)\n",
|
1155 |
+
"print(\"ORIGINAL MODEL:\")\n",
|
1156 |
+
"print(f\" ROUGE: {orig_rouge}\")\n",
|
1157 |
+
"print(f\" BLEU: {orig_bleu}\")\n",
|
1158 |
+
"print(f\" Fuzzy Match Score: {orig_fuzzy:.2f}%\")\n",
|
1159 |
+
"print(f\" Exact Match Accuracy: {orig_exact:.2f}%\\n\")\n",
|
1160 |
+
"print(\"FINE-TUNED MODEL:\")\n",
|
1161 |
+
"print(f\" ROUGE: {finetuned_rouge}\")\n",
|
1162 |
+
"print(f\" BLEU: {finetuned_bleu}\")\n",
|
1163 |
+
"print(f\" Fuzzy Match Score: {finetuned_fuzzy:.2f}%\")\n",
|
1164 |
+
"print(f\" Exact Match Accuracy: {finetuned_exact:.2f}%\")\n",
|
1165 |
+
"print(\"=\"*100)\n",
|
1166 |
+
"clear_memory()\n"
|
1167 |
+
]
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"cell_type": "code",
|
1171 |
+
"execution_count": 32,
|
1172 |
+
"id": "462546a7-6928-4723-b00e-23c3a4091d99",
|
1173 |
+
"metadata": {},
|
1174 |
+
"outputs": [
|
1175 |
+
{
|
1176 |
+
"name": "stderr",
|
1177 |
+
"output_type": "stream",
|
1178 |
+
"text": [
|
1179 |
+
"2025-03-18 16:55:06,158 - INFO - Running inference with deterministic decoding and beam search.\n"
|
1180 |
+
]
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"name": "stdout",
|
1184 |
+
"output_type": "stream",
|
1185 |
+
"text": [
|
1186 |
+
"Prompt:\n",
|
1187 |
+
"Context:\n",
|
1188 |
+
"CREATE TABLE customers (id INT PRIMARY KEY, name VARCHAR(100), country VARCHAR(50)); CREATE TABLE orders (order_id INT PRIMARY KEY, customer_id INT, total_amount DECIMAL(10,2), order_date DATE, FOREIGN KEY (customer_id) REFERENCES customers(id)); INSERT INTO customers (id, name, country) VALUES (1, 'Alice', 'USA'), (2, 'Bob', 'UK'), (3, 'Charlie', 'Canada'), (4, 'David', 'USA'); INSERT INTO orders (order_id, customer_id, total_amount, order_date) VALUES (101, 1, 500, '2024-01-15'), (102, 2, 300, '2024-01-20'), (103, 1, 700, '2024-02-10'), (104, 3, 450, '2024-02-15'), (105, 4, 900, '2024-03-05');\n",
|
1189 |
+
"\n",
|
1190 |
+
"Query:\n",
|
1191 |
+
"Retrieve the total order amount for each customer, showing only customers from the USA, and sort the result by total order amount in descending order.\n",
|
1192 |
+
"\n",
|
1193 |
+
"Response:\n",
|
1194 |
+
"SELECT customers.name, SUM(orders.total_amount) as total_amount FROM customers INNER JOIN orders ON customers.id = orders.customer_id WHERE customers.country = 'USA' GROUP BY customers.name ORDER BY total_amount DESC;\n",
|
1195 |
+
"\n",
|
1196 |
+
"EXPECTED RESPONSE:\n",
|
1197 |
+
"SELECT c.name, SUM(o.total_amount) as total_order_amount FROM customers c JOIN orders o ON c.id = o.customer_id WHERE c.country = 'USA' GROUP BY c.name ORDER BY total_order_amount DESC;\n"
|
1198 |
+
]
|
1199 |
+
}
|
1200 |
+
],
|
1201 |
+
"source": [
|
1202 |
+
"import torch\n",
|
1203 |
+
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
|
1204 |
+
"import logging\n",
|
1205 |
+
"\n",
|
1206 |
+
"# Set up logging\n",
|
1207 |
+
"logging.basicConfig(\n",
|
1208 |
+
" level=logging.INFO,\n",
|
1209 |
+
" format=\"%(asctime)s - %(levelname)s - %(message)s\",\n",
|
1210 |
+
")\n",
|
1211 |
+
"logger = logging.getLogger(__name__)\n",
|
1212 |
+
"\n",
|
1213 |
+
"# Ensure device is set (GPU if available)\n",
|
1214 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
1215 |
+
"\n",
|
1216 |
+
"# Load the fine-tuned model and tokenizer\n",
|
1217 |
+
"model_name = \"text2sql_flant5base_finetuned\" # Directory of your fine-tuned model\n",
|
1218 |
+
"finetuned_model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)\n",
|
1219 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"google/flan-t5-base\")\n",
|
1220 |
+
"finetuned_model.to(device)\n",
|
1221 |
+
"\n",
|
1222 |
+
"def run_inference(prompt_text: str) -> str:\n",
|
1223 |
+
" \"\"\"\n",
|
1224 |
+
" Runs inference on the fine-tuned model using deterministic decoding\n",
|
1225 |
+
" with beam search, returning the generated SQL query.\n",
|
1226 |
+
" \"\"\"\n",
|
1227 |
+
" inputs = tokenizer(prompt_text, return_tensors=\"pt\").to(device)\n",
|
1228 |
+
" generated_ids = finetuned_model.generate(\n",
|
1229 |
+
" input_ids=inputs[\"input_ids\"],\n",
|
1230 |
+
" max_new_tokens=250, # Adjust based on query complexity\n",
|
1231 |
+
" temperature=0.0, # Deterministic output\n",
|
1232 |
+
" num_beams=3, # Beam search for better output quality\n",
|
1233 |
+
" early_stopping=True, # Stop early if possible\n",
|
1234 |
+
" )\n",
|
1235 |
+
" return tokenizer.decode(generated_ids[0], skip_special_tokens=True)\n",
|
1236 |
+
"\n",
|
1237 |
+
"# Sample context and query (example)\n",
|
1238 |
+
"context = (\n",
|
1239 |
+
" \"CREATE TABLE customers (id INT PRIMARY KEY, name VARCHAR(100), country VARCHAR(50)); \"\n",
|
1240 |
+
" \"CREATE TABLE orders (order_id INT PRIMARY KEY, customer_id INT, total_amount DECIMAL(10,2), \"\n",
|
1241 |
+
" \"order_date DATE, FOREIGN KEY (customer_id) REFERENCES customers(id)); \"\n",
|
1242 |
+
" \"INSERT INTO customers (id, name, country) VALUES (1, 'Alice', 'USA'), (2, 'Bob', 'UK'), \"\n",
|
1243 |
+
" \"(3, 'Charlie', 'Canada'), (4, 'David', 'USA'); \"\n",
|
1244 |
+
" \"INSERT INTO orders (order_id, customer_id, total_amount, order_date) VALUES \"\n",
|
1245 |
+
" \"(101, 1, 500, '2024-01-15'), (102, 2, 300, '2024-01-20'), \"\n",
|
1246 |
+
" \"(103, 1, 700, '2024-02-10'), (104, 3, 450, '2024-02-15'), \"\n",
|
1247 |
+
" \"(105, 4, 900, '2024-03-05');\"\n",
|
1248 |
+
")\n",
|
1249 |
+
"query = (\n",
|
1250 |
+
" \"Retrieve the total order amount for each customer, showing only customers from the USA, \"\n",
|
1251 |
+
" \"and sort the result by total order amount in descending order.\"\n",
|
1252 |
+
")\n",
|
1253 |
+
"\n",
|
1254 |
+
"# Construct the prompt\n",
|
1255 |
+
"sample_prompt = f\"\"\"Context:\n",
|
1256 |
+
"{context}\n",
|
1257 |
+
"\n",
|
1258 |
+
"Query:\n",
|
1259 |
+
"{query}\n",
|
1260 |
+
"\n",
|
1261 |
+
"Response:\n",
|
1262 |
+
"\"\"\"\n",
|
1263 |
+
"\n",
|
1264 |
+
"logger.info(\"Running inference with deterministic decoding and beam search.\")\n",
|
1265 |
+
"generated_sql = run_inference(sample_prompt)\n",
|
1266 |
+
"\n",
|
1267 |
+
"# Define the expected response (this is a placeholder - update as necessary)\n",
|
1268 |
+
"expected_response = (\n",
|
1269 |
+
" \"SELECT c.name, SUM(o.total_amount) as total_order_amount \"\n",
|
1270 |
+
" \"FROM customers c \"\n",
|
1271 |
+
" \"JOIN orders o ON c.id = o.customer_id \"\n",
|
1272 |
+
" \"WHERE c.country = 'USA' \"\n",
|
1273 |
+
" \"GROUP BY c.name \"\n",
|
1274 |
+
" \"ORDER BY total_order_amount DESC;\"\n",
|
1275 |
+
")\n",
|
1276 |
+
"\n",
|
1277 |
+
"# Print output in the given format\n",
|
1278 |
+
"print(\"Prompt:\")\n",
|
1279 |
+
"print(\"Context:\")\n",
|
1280 |
+
"print(context)\n",
|
1281 |
+
"print(\"\\nQuery:\")\n",
|
1282 |
+
"print(query)\n",
|
1283 |
+
"print(\"\\nResponse:\")\n",
|
1284 |
+
"print(generated_sql)\n",
|
1285 |
+
"print(\"\\nEXPECTED RESPONSE:\")\n",
|
1286 |
+
"print(expected_response)\n"
|
1287 |
+
]
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"cell_type": "code",
|
1291 |
+
"execution_count": 20,
|
1292 |
+
"id": "a69f268e-bc69-4633-9c15-4e118c20178e",
|
1293 |
+
"metadata": {},
|
1294 |
+
"outputs": [
|
1295 |
+
{
|
1296 |
+
"name": "stdout",
|
1297 |
+
"output_type": "stream",
|
1298 |
+
"text": [
|
1299 |
+
"✅ LoRA adapter saved at: text2sql_flant5base_finetuned\n",
|
1300 |
+
"✅ Fully merged fine-tuned model saved at: text2sql_flant5base_finetuned_full\n"
|
1301 |
+
]
|
1302 |
+
}
|
1303 |
+
],
|
1304 |
+
"source": [
|
1305 |
+
"import torch\n",
|
1306 |
+
"import json\n",
|
1307 |
+
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
|
1308 |
+
"from peft import PeftModel\n",
|
1309 |
+
"\n",
|
1310 |
+
"# Define paths\n",
|
1311 |
+
"base_model_name = \"google/flan-t5-base\" # Base model name\n",
|
1312 |
+
"lora_model_path = \"text2sql_flant5base_finetuned\" # Folder where LoRA adapter is saved\n",
|
1313 |
+
"full_model_output_path = \"text2sql_flant5base_finetuned_full\" # For merged full model\n",
|
1314 |
+
"\n",
|
1315 |
+
"# Load base model and tokenizer\n",
|
1316 |
+
"base_model = AutoModelForSeq2SeqLM.from_pretrained(base_model_name, torch_dtype=torch.bfloat16)\n",
|
1317 |
+
"tokenizer = AutoTokenizer.from_pretrained(base_model_name)\n",
|
1318 |
+
"\n",
|
1319 |
+
"# Load fine-tuned LoRA adapter model\n",
|
1320 |
+
"lora_model = PeftModel.from_pretrained(base_model, lora_model_path)\n",
|
1321 |
+
"\n",
|
1322 |
+
"# Save the LoRA adapter separately (for users who want lightweight adapters)\n",
|
1323 |
+
"lora_model.save_pretrained(lora_model_path)\n",
|
1324 |
+
"tokenizer.save_pretrained(lora_model_path)\n",
|
1325 |
+
"\n",
|
1326 |
+
"# Merge LoRA into the base model to create a fully fine-tuned model\n",
|
1327 |
+
"merged_model = lora_model.merge_and_unload()\n",
|
1328 |
+
"\n",
|
1329 |
+
"# Save the full fine-tuned model\n",
|
1330 |
+
"merged_model.save_pretrained(full_model_output_path)\n",
|
1331 |
+
"tokenizer.save_pretrained(full_model_output_path)\n",
|
1332 |
+
"\n",
|
1333 |
+
"# Save generation config (optional but recommended for inference settings)\n",
|
1334 |
+
"generation_config = {\n",
|
1335 |
+
" \"max_new_tokens\": 250,\n",
|
1336 |
+
" \"temperature\": 0.0,\n",
|
1337 |
+
" \"num_beams\": 3,\n",
|
1338 |
+
" \"early_stopping\": True\n",
|
1339 |
+
"}\n",
|
1340 |
+
"with open(f\"{full_model_output_path}/generation_config.json\", \"w\") as f:\n",
|
1341 |
+
" json.dump(generation_config, f)\n",
|
1342 |
+
"\n",
|
1343 |
+
"print(f\"✅ LoRA adapter saved at: {lora_model_path}\")\n",
|
1344 |
+
"print(f\"✅ Fully merged fine-tuned model saved at: {full_model_output_path}\")\n"
|
1345 |
+
]
|
1346 |
+
},
|
1347 |
+
{
|
1348 |
+
"cell_type": "code",
|
1349 |
+
"execution_count": 33,
|
1350 |
+
"id": "f1c95dfc-6662-44d8-8ecc-bff414fecee5",
|
1351 |
+
"metadata": {},
|
1352 |
+
"outputs": [
|
1353 |
+
{
|
1354 |
+
"name": "stderr",
|
1355 |
+
"output_type": "stream",
|
1356 |
+
"text": [
|
1357 |
+
"2025-03-18 16:55:46,428 - INFO - Running inference with beam search decoding.\n"
|
1358 |
+
]
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"name": "stdout",
|
1362 |
+
"output_type": "stream",
|
1363 |
+
"text": [
|
1364 |
+
"Prompt:\n",
|
1365 |
+
"Context:\n",
|
1366 |
+
"CREATE TABLE employees (id INT PRIMARY KEY, name VARCHAR(100), department VARCHAR(50), salary INT); CREATE TABLE projects (project_id INT PRIMARY KEY, project_name VARCHAR(100), budget INT); CREATE TABLE employee_projects (employee_id INT, project_id INT, role VARCHAR(50), FOREIGN KEY (employee_id) REFERENCES employees(id), FOREIGN KEY (project_id) REFERENCES projects(project_id)); INSERT INTO employees (id, name, department, salary) VALUES (1, 'Alice', 'Engineering', 90000), (2, 'Bob', 'Marketing', 70000), (3, 'Charlie', 'Engineering', 95000), (4, 'David', 'HR', 60000), (5, 'Eve', 'Engineering', 110000); INSERT INTO projects (project_id, project_name, budget) VALUES (101, 'AI Research', 500000), (102, 'Marketing Campaign', 200000), (103, 'Cloud Migration', 300000); INSERT INTO employee_projects (employee_id, project_id, role) VALUES (1, 101, 'Lead Engineer'), (2, 102, 'Marketing Specialist'), (3, 101, 'Engineer'), (4, 103, 'HR Coordinator'), (5, 101, 'AI Scientist');\n",
|
1367 |
+
"\n",
|
1368 |
+
"Query:\n",
|
1369 |
+
"Find the names of employees who are working on the 'AI Research' project along with their roles.\n",
|
1370 |
+
"\n",
|
1371 |
+
"Response:\n",
|
1372 |
+
"SELECT employees.name, employee_projects.role FROM employees INNER JOIN employee_projects ON employees.id = employee_projects.employee_id INNER JOIN projects ON employee_projects.project_id = projects.project_id WHERE projects.project_name = 'AI Research';\n"
|
1373 |
+
]
|
1374 |
+
}
|
1375 |
+
],
|
1376 |
+
"source": [
|
1377 |
+
"import torch\n",
|
1378 |
+
"from transformers import AutoModelForSeq2SeqLM, AutoTokenizer\n",
|
1379 |
+
"import logging\n",
|
1380 |
+
"\n",
|
1381 |
+
"# Set up logging\n",
|
1382 |
+
"logging.basicConfig(level=logging.INFO, format=\"%(asctime)s - %(levelname)s - %(message)s\")\n",
|
1383 |
+
"logger = logging.getLogger(__name__)\n",
|
1384 |
+
"\n",
|
1385 |
+
"# Ensure device is set (GPU if available)\n",
|
1386 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
1387 |
+
"\n",
|
1388 |
+
"# Load the fine-tuned model and tokenizer\n",
|
1389 |
+
"model_name = \"aarohanverma/text2sql-flan-t5-base-qlora-finetuned\"\n",
|
1390 |
+
"model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)\n",
|
1391 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"aarohanverma/text2sql-flan-t5-base-qlora-finetuned\")\n",
|
1392 |
+
"\n",
|
1393 |
+
"# Ensure decoder start token is set\n",
|
1394 |
+
"if model.config.decoder_start_token_id is None:\n",
|
1395 |
+
" model.config.decoder_start_token_id = tokenizer.pad_token_id\n",
|
1396 |
+
"\n",
|
1397 |
+
"def run_inference(prompt_text: str) -> str:\n",
|
1398 |
+
" \"\"\"\n",
|
1399 |
+
" Runs inference on the fine-tuned model using beam search with fixes for repetition.\n",
|
1400 |
+
" \"\"\"\n",
|
1401 |
+
" inputs = tokenizer(prompt_text, return_tensors=\"pt\", truncation=True, max_length=512).to(device)\n",
|
1402 |
+
"\n",
|
1403 |
+
" generated_ids = model.generate(\n",
|
1404 |
+
" input_ids=inputs[\"input_ids\"],\n",
|
1405 |
+
" decoder_start_token_id=model.config.decoder_start_token_id, \n",
|
1406 |
+
" max_new_tokens=100, \n",
|
1407 |
+
" temperature=0.1, \n",
|
1408 |
+
" num_beams=5, \n",
|
1409 |
+
" repetition_penalty=1.2, \n",
|
1410 |
+
" early_stopping=True, \n",
|
1411 |
+
" )\n",
|
1412 |
+
"\n",
|
1413 |
+
" generated_sql = tokenizer.decode(generated_ids[0], skip_special_tokens=True)\n",
|
1414 |
+
"\n",
|
1415 |
+
" # Post-processing to remove repeated text\n",
|
1416 |
+
" generated_sql = generated_sql.split(\";\")[0] + \";\" # Keep only the first valid SQL query\n",
|
1417 |
+
"\n",
|
1418 |
+
" return generated_sql\n",
|
1419 |
+
"\n",
|
1420 |
+
"# Example usage:\n",
|
1421 |
+
"context = (\n",
|
1422 |
+
" \"CREATE TABLE employees (id INT PRIMARY KEY, name VARCHAR(100), department VARCHAR(50), salary INT); \"\n",
|
1423 |
+
" \"CREATE TABLE projects (project_id INT PRIMARY KEY, project_name VARCHAR(100), budget INT); \"\n",
|
1424 |
+
" \"CREATE TABLE employee_projects (employee_id INT, project_id INT, role VARCHAR(50), \"\n",
|
1425 |
+
" \"FOREIGN KEY (employee_id) REFERENCES employees(id), FOREIGN KEY (project_id) REFERENCES projects(project_id)); \"\n",
|
1426 |
+
" \"INSERT INTO employees (id, name, department, salary) VALUES \"\n",
|
1427 |
+
" \"(1, 'Alice', 'Engineering', 90000), (2, 'Bob', 'Marketing', 70000), \"\n",
|
1428 |
+
" \"(3, 'Charlie', 'Engineering', 95000), (4, 'David', 'HR', 60000), (5, 'Eve', 'Engineering', 110000); \"\n",
|
1429 |
+
" \"INSERT INTO projects (project_id, project_name, budget) VALUES \"\n",
|
1430 |
+
" \"(101, 'AI Research', 500000), (102, 'Marketing Campaign', 200000), (103, 'Cloud Migration', 300000); \"\n",
|
1431 |
+
" \"INSERT INTO employee_projects (employee_id, project_id, role) VALUES \"\n",
|
1432 |
+
" \"(1, 101, 'Lead Engineer'), (2, 102, 'Marketing Specialist'), (3, 101, 'Engineer'), \"\n",
|
1433 |
+
" \"(4, 103, 'HR Coordinator'), (5, 101, 'AI Scientist');\"\n",
|
1434 |
+
")\n",
|
1435 |
+
"\n",
|
1436 |
+
"query = (\"Find the names of employees who are working on the 'AI Research' project along with their roles.\")\n",
|
1437 |
+
"\n",
|
1438 |
+
"\n",
|
1439 |
+
"\n",
|
1440 |
+
"# Construct the prompt\n",
|
1441 |
+
"sample_prompt = f\"\"\"Context:\n",
|
1442 |
+
"{context}\n",
|
1443 |
+
"\n",
|
1444 |
+
"Query:\n",
|
1445 |
+
"{query}\n",
|
1446 |
+
"\n",
|
1447 |
+
"Response:\n",
|
1448 |
+
"\"\"\"\n",
|
1449 |
+
"\n",
|
1450 |
+
"logger.info(\"Running inference with beam search decoding.\")\n",
|
1451 |
+
"generated_sql = run_inference(sample_prompt)\n",
|
1452 |
+
"\n",
|
1453 |
+
"print(\"Prompt:\")\n",
|
1454 |
+
"print(\"Context:\")\n",
|
1455 |
+
"print(context)\n",
|
1456 |
+
"print(\"\\nQuery:\")\n",
|
1457 |
+
"print(query)\n",
|
1458 |
+
"print(\"\\nResponse:\")\n",
|
1459 |
+
"print(generated_sql)"
|
1460 |
+
]
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"cell_type": "code",
|
1464 |
+
"execution_count": null,
|
1465 |
+
"id": "562458ed-53f4-44af-a7a3-e42a175c7245",
|
1466 |
+
"metadata": {},
|
1467 |
+
"outputs": [],
|
1468 |
+
"source": []
|
1469 |
+
}
|
1470 |
+
],
|
1471 |
+
"metadata": {
|
1472 |
+
"kernelspec": {
|
1473 |
+
"display_name": "Python3 (ipykernel)",
|
1474 |
+
"language": "python",
|
1475 |
+
"name": "python3"
|
1476 |
+
},
|
1477 |
+
"language_info": {
|
1478 |
+
"codemirror_mode": {
|
1479 |
+
"name": "ipython",
|
1480 |
+
"version": 3
|
1481 |
+
},
|
1482 |
+
"file_extension": ".py",
|
1483 |
+
"mimetype": "text/x-python",
|
1484 |
+
"name": "python",
|
1485 |
+
"nbconvert_exporter": "python",
|
1486 |
+
"pygments_lexer": "ipython3",
|
1487 |
+
"version": "3.10.12"
|
1488 |
+
}
|
1489 |
+
},
|
1490 |
+
"nbformat": 4,
|
1491 |
+
"nbformat_minor": 5
|
1492 |
+
}
|