aaronrmm commited on
Commit
53d1977
·
1 Parent(s): 0a1dd21

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -3.78 +/- 1.03
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82e0a037663c0f28b958273cd0f2c5d61d4185cdbc19da68a43fbf1d928eb150
3
+ size 108118
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3078749b40>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f307873e100>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1684614235360520898,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAt07hPjEWILwcbw8/t07hPjEWILwcbw8/t07hPjEWILwcbw8/t07hPjEWILwcbw8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1SuUv4dH0D8bJJQ/qhjKv/gBsj/swQ6/VsUNPhk6gL8V4Hi/5Jq0P2fjh72TetO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3TuE+MRYgvBxvDz85F008e0xGOYAZfju3TuE+MRYgvBxvDz85F008e0xGOYAZfju3TuE+MRYgvBxvDz85F008e0xGOYAZfju3TuE+MRYgvBxvDz85F008e0xGOYAZfjuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.44005367 -0.00977092 0.56028914]\n [ 0.44005367 -0.00977092 0.56028914]\n [ 0.44005367 -0.00977092 0.56028914]\n [ 0.44005367 -0.00977092 0.56028914]]",
38
+ "desired_goal": "[[-1.1575876 1.6271828 1.1573519 ]\n [-1.5788777 1.3906851 -0.5576465 ]\n [ 0.13844809 -1.001773 -0.9721692 ]\n [ 1.4109769 -0.0663517 -1.6521782 ]]",
39
+ "observation": "[[ 4.4005367e-01 -9.7709158e-03 5.6028914e-01 1.2517744e-02\n 1.8911243e-04 3.8772523e-03]\n [ 4.4005367e-01 -9.7709158e-03 5.6028914e-01 1.2517744e-02\n 1.8911243e-04 3.8772523e-03]\n [ 4.4005367e-01 -9.7709158e-03 5.6028914e-01 1.2517744e-02\n 1.8911243e-04 3.8772523e-03]\n [ 4.4005367e-01 -9.7709158e-03 5.6028914e-01 1.2517744e-02\n 1.8911243e-04 3.8772523e-03]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsMISPtGdm71kg3I9j8ajvZMy7j0wv3c+Wf7hPdwomL1EQxY+5C1kveaKn73EUlY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.1433208 -0.0759846 0.05920734]\n [-0.07996856 0.1163074 0.24194026]\n [ 0.11034841 -0.07429668 0.14674097]\n [-0.05570783 -0.07790165 0.2093001 ]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHCeFeY8zFcCUhpRSlIwBbJRLMowBdJRHQKJE0khRqGl1fZQoaAZoCWgPQwgi+yDLgnkUwJSGlFKUaBVLMmgWR0CiRKgc94eLdX2UKGgGaAloD0MI1T4djxl4FMCUhpRSlGgVSzJoFkdAokSBiTdLx3V9lChoBmgJaA9DCCtpxTcUPgvAlIaUUpRoFUsyaBZHQKJEWmJm/WV1fZQoaAZoCWgPQwiTqBd8moMQwJSGlFKUaBVLMmgWR0CiRbMhgVoIdX2UKGgGaAloD0MIlSu8y0W8DcCUhpRSlGgVSzJoFkdAokWJE6T4cnV9lChoBmgJaA9DCJVm8zgMBgXAlIaUUpRoFUsyaBZHQKJFYmR/3Fl1fZQoaAZoCWgPQwiHTs+7sUADwJSGlFKUaBVLMmgWR0CiRTtN8E3bdX2UKGgGaAloD0MItmYrL/n/BMCUhpRSlGgVSzJoFkdAokaIt16mf3V9lChoBmgJaA9DCI//AkGALAfAlIaUUpRoFUsyaBZHQKJGXqgRK6F1fZQoaAZoCWgPQwjuJvim6VMNwJSGlFKUaBVLMmgWR0CiRjgLZzxPdX2UKGgGaAloD0MIM1GE1O3MDsCUhpRSlGgVSzJoFkdAokYQ5imVJXV9lChoBmgJaA9DCCk+PiE7jwHAlIaUUpRoFUsyaBZHQKJHhVsk6cR1fZQoaAZoCWgPQwjBx2DFqRYSwJSGlFKUaBVLMmgWR0CiR1tI065odX2UKGgGaAloD0MIblD7rZ0o/b+UhpRSlGgVSzJoFkdAokc0nE2pAHV9lChoBmgJaA9DCCcvMgG/JgTAlIaUUpRoFUsyaBZHQKJHDYao/A11fZQoaAZoCWgPQwgG8uzyre8EwJSGlFKUaBVLMmgWR0CiSEsS9M9KdX2UKGgGaAloD0MIuAa2SrCYC8CUhpRSlGgVSzJoFkdAokgg5R0lq3V9lChoBmgJaA9DCD7MXrad9gfAlIaUUpRoFUsyaBZHQKJH+jIJZ4h1fZQoaAZoCWgPQwjv5NNjW3YSwJSGlFKUaBVLMmgWR0CiR9MchkiEdX2UKGgGaAloD0MIbhlwlpKl/L+UhpRSlGgVSzJoFkdAokkRFPSDy3V9lChoBmgJaA9DCGjqdYvAGAXAlIaUUpRoFUsyaBZHQKJI5u2JBPd1fZQoaAZoCWgPQwi0VrQ5zu0AwJSGlFKUaBVLMmgWR0CiSMA9V3lkdX2UKGgGaAloD0MIsCDNWDTdAcCUhpRSlGgVSzJoFkdAokiZFZxJd3V9lChoBmgJaA9DCNfbZirEIw3AlIaUUpRoFUsyaBZHQKJJ2kyDZlF1fZQoaAZoCWgPQwjPg7uzdtsEwJSGlFKUaBVLMmgWR0CiSbBiCrcTdX2UKGgGaAloD0MIeT9uv3wyAsCUhpRSlGgVSzJoFkdAokmJvHcUNHV9lChoBmgJaA9DCP/MID6w4wrAlIaUUpRoFUsyaBZHQKJJYrSVnmJ1fZQoaAZoCWgPQwiPxwxUxt8CwJSGlFKUaBVLMmgWR0CiSrA6ltTDdX2UKGgGaAloD0MI0xQBTu/iBMCUhpRSlGgVSzJoFkdAokqGEbo8p3V9lChoBmgJaA9DCKA01CgkeRHAlIaUUpRoFUsyaBZHQKJKX18LKFJ1fZQoaAZoCWgPQwgTEJNwIU8GwJSGlFKUaBVLMmgWR0CiSjhX8wYcdX2UKGgGaAloD0MIiGTIsfWM/r+UhpRSlGgVSzJoFkdAokuHpUxVQ3V9lChoBmgJaA9DCATHZdzUYAjAlIaUUpRoFUsyaBZHQKJLXXFLnLd1fZQoaAZoCWgPQwi+amXCL7X+v5SGlFKUaBVLMmgWR0CiSzbZnL7odX2UKGgGaAloD0MIUfUrnQ8/FMCUhpRSlGgVSzJoFkdAoksPwqiGnHV9lChoBmgJaA9DCMOdCyO9KAfAlIaUUpRoFUsyaBZHQKJMW2Yv38J1fZQoaAZoCWgPQwgNjSeCOI8PwJSGlFKUaBVLMmgWR0CiTDFImPYGdX2UKGgGaAloD0MIfGKdKt/zDMCUhpRSlGgVSzJoFkdAokwKnDR+jXV9lChoBmgJaA9DCJPi4xOykw/AlIaUUpRoFUsyaBZHQKJL450bLlp1fZQoaAZoCWgPQwghPxu5bpoRwJSGlFKUaBVLMmgWR0CiTTCP6sQvdX2UKGgGaAloD0MIFR+fkJ03C8CUhpRSlGgVSzJoFkdAok0GYF7laXV9lChoBmgJaA9DCHYXKCmwIAHAlIaUUpRoFUsyaBZHQKJM365XlsB1fZQoaAZoCWgPQwgLR5BKsUMFwJSGlFKUaBVLMmgWR0CiTLiQtBfKdX2UKGgGaAloD0MIbhYvFoYIDcCUhpRSlGgVSzJoFkdAok32OGTLXHV9lChoBmgJaA9DCAgAjj17vhXAlIaUUpRoFUsyaBZHQKJNzA6+36R1fZQoaAZoCWgPQwjMDYY6rEATwJSGlFKUaBVLMmgWR0CiTaVV5rxidX2UKGgGaAloD0MIUMWNW8w/EsCUhpRSlGgVSzJoFkdAok1+J79hqnV9lChoBmgJaA9DCN4dGavNjx3AlIaUUpRoFUsyaBZHQKJOwKuSwGJ1fZQoaAZoCWgPQwimmIOgo7UNwJSGlFKUaBVLMmgWR0CiTpaRZEDydX2UKGgGaAloD0MIARQjS+Z4FsCUhpRSlGgVSzJoFkdAok5v7xd6cHV9lChoBmgJaA9DCCbhQh7BLQHAlIaUUpRoFUsyaBZHQKJOSPPszEd1fZQoaAZoCWgPQwgL73IR34kJwJSGlFKUaBVLMmgWR0CiT5Z7gKnfdX2UKGgGaAloD0MIiXyXUpdsAMCUhpRSlGgVSzJoFkdAok9sVclgMXV9lChoBmgJaA9DCGNGeHsQYgbAlIaUUpRoFUsyaBZHQKJPRZ4fOlh1fZQoaAZoCWgPQwiSkbOwp93/v5SGlFKUaBVLMmgWR0CiTx5/LDAKdX2UKGgGaAloD0MIcGHdeHc0FsCUhpRSlGgVSzJoFkdAolBboOhCdHV9lChoBmgJaA9DCNvcmJ6whAvAlIaUUpRoFUsyaBZHQKJQMWzF+/h1fZQoaAZoCWgPQwgpQup29tURwJSGlFKUaBVLMmgWR0CiUAq2KEWZdX2UKGgGaAloD0MIJsPxfAZ0BsCUhpRSlGgVSzJoFkdAok/jmW+oL3V9lChoBmgJaA9DCBSX4xWIXgrAlIaUUpRoFUsyaBZHQKJRQ+eOGTN1fZQoaAZoCWgPQwj4pBMJphoIwJSGlFKUaBVLMmgWR0CiURnUc4o7dX2UKGgGaAloD0MIRluVRPZBE8CUhpRSlGgVSzJoFkdAolDzSqlxfnV9lChoBmgJaA9DCIvEBDV8y/2/lIaUUpRoFUsyaBZHQKJQzFH8TBZ1fZQoaAZoCWgPQwhKea2E7lIPwJSGlFKUaBVLMmgWR0CiUix/ViF1dX2UKGgGaAloD0MIuf/IdOiUBMCUhpRSlGgVSzJoFkdAolICY9gWrXV9lChoBmgJaA9DCGtEMA4uXfC/lIaUUpRoFUsyaBZHQKJR28U21lZ1fZQoaAZoCWgPQwjTbB6HwZwIwJSGlFKUaBVLMmgWR0CiUbS3b212dX2UKGgGaAloD0MIJR+7C5R0FsCUhpRSlGgVSzJoFkdAolMO9SMtLHV9lChoBmgJaA9DCCbirfNvFwTAlIaUUpRoFUsyaBZHQKJS5N1QqI91fZQoaAZoCWgPQwiqEI/Ey+MTwJSGlFKUaBVLMmgWR0CiUr5VOsT4dX2UKGgGaAloD0MI6E1FKoydGMCUhpRSlGgVSzJoFkdAolKXQv6CUXV9lChoBmgJaA9DCCvCTUaVgQzAlIaUUpRoFUsyaBZHQKJT6E/0NBp1fZQoaAZoCWgPQwhUOlj/50AUwJSGlFKUaBVLMmgWR0CiU74oqkM1dX2UKGgGaAloD0MICJChYwf1B8CUhpRSlGgVSzJoFkdAolOXdGiHqXV9lChoBmgJaA9DCK0yU1p/qwTAlIaUUpRoFUsyaBZHQKJTcEaESM91fZQoaAZoCWgPQwjcDg2LUfcWwJSGlFKUaBVLMmgWR0CiVKiXQdCFdX2UKGgGaAloD0MILzIBv0aSCsCUhpRSlGgVSzJoFkdAolR+gnMMZ3V9lChoBmgJaA9DCHRfzmxX2BHAlIaUUpRoFUsyaBZHQKJUV9WIXTF1fZQoaAZoCWgPQwjLK9fbZioHwJSGlFKUaBVLMmgWR0CiVDCxeLNwdX2UKGgGaAloD0MIcNI0KJpnCcCUhpRSlGgVSzJoFkdAolV7lvIfbXV9lChoBmgJaA9DCGhaYmU0sgfAlIaUUpRoFUsyaBZHQKJVUVs1sLx1fZQoaAZoCWgPQwgNN+Dzw2gNwJSGlFKUaBVLMmgWR0CiVSqmbb1zdX2UKGgGaAloD0MIRZvj3Cb8AsCUhpRSlGgVSzJoFkdAolUDslb/wXV9lChoBmgJaA9DCIicvp6veQvAlIaUUpRoFUsyaBZHQKJWRCSA6Ml1fZQoaAZoCWgPQwgd5zbhXgkVwJSGlFKUaBVLMmgWR0CiVhoA4n4PdX2UKGgGaAloD0MIle8ZidAIEMCUhpRSlGgVSzJoFkdAolXzURWcSXV9lChoBmgJaA9DCEaWzLG8qwjAlIaUUpRoFUsyaBZHQKJVzCkXUH91fZQoaAZoCWgPQwj85ChAFIz5v5SGlFKUaBVLMmgWR0CiVx3nQpnZdX2UKGgGaAloD0MIYf91btqMDMCUhpRSlGgVSzJoFkdAolbz0lJHy3V9lChoBmgJaA9DCETcnEoG4AbAlIaUUpRoFUsyaBZHQKJWzSHdoFp1fZQoaAZoCWgPQwg4EmiwqTMQwJSGlFKUaBVLMmgWR0CiVqX2EkB0dX2UKGgGaAloD0MIvM/x0eIMFsCUhpRSlGgVSzJoFkdAolf8mhM8HXV9lChoBmgJaA9DCM0d/S/XYgjAlIaUUpRoFUsyaBZHQKJX0mhufmN1fZQoaAZoCWgPQwj+tFGdDmQLwJSGlFKUaBVLMmgWR0CiV6u+qR2bdX2UKGgGaAloD0MIKhprf2e7/r+UhpRSlGgVSzJoFkdAoleEk+otMHV9lChoBmgJaA9DCA5N2ekHVRHAlIaUUpRoFUsyaBZHQKJYy/1QIld1fZQoaAZoCWgPQwjBOo4fKm0MwJSGlFKUaBVLMmgWR0CiWKHhjvuxdX2UKGgGaAloD0MIcv4mFCIg8r+UhpRSlGgVSzJoFkdAolh7Pt2LYXV9lChoBmgJaA9DCP2GiQYpeA/AlIaUUpRoFUsyaBZHQKJYVETg2qF1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2c6d679f5baa0a7795074a31c584896d971c18d8da52df4c403e449adfb0157
3
+ size 44670
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffcdbee55473ff2cc3401234409e4962d4c263ec7209383c6505eec46593ff57
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.27 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 1.11.0+cu113
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3078749b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f307873e100>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684614235360520898, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAt07hPjEWILwcbw8/t07hPjEWILwcbw8/t07hPjEWILwcbw8/t07hPjEWILwcbw8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1SuUv4dH0D8bJJQ/qhjKv/gBsj/swQ6/VsUNPhk6gL8V4Hi/5Jq0P2fjh72TetO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC3TuE+MRYgvBxvDz85F008e0xGOYAZfju3TuE+MRYgvBxvDz85F008e0xGOYAZfju3TuE+MRYgvBxvDz85F008e0xGOYAZfju3TuE+MRYgvBxvDz85F008e0xGOYAZfjuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.44005367 -0.00977092 0.56028914]\n [ 0.44005367 -0.00977092 0.56028914]\n [ 0.44005367 -0.00977092 0.56028914]\n [ 0.44005367 -0.00977092 0.56028914]]", "desired_goal": "[[-1.1575876 1.6271828 1.1573519 ]\n [-1.5788777 1.3906851 -0.5576465 ]\n [ 0.13844809 -1.001773 -0.9721692 ]\n [ 1.4109769 -0.0663517 -1.6521782 ]]", "observation": "[[ 4.4005367e-01 -9.7709158e-03 5.6028914e-01 1.2517744e-02\n 1.8911243e-04 3.8772523e-03]\n [ 4.4005367e-01 -9.7709158e-03 5.6028914e-01 1.2517744e-02\n 1.8911243e-04 3.8772523e-03]\n [ 4.4005367e-01 -9.7709158e-03 5.6028914e-01 1.2517744e-02\n 1.8911243e-04 3.8772523e-03]\n [ 4.4005367e-01 -9.7709158e-03 5.6028914e-01 1.2517744e-02\n 1.8911243e-04 3.8772523e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsMISPtGdm71kg3I9j8ajvZMy7j0wv3c+Wf7hPdwomL1EQxY+5C1kveaKn73EUlY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.1433208 -0.0759846 0.05920734]\n [-0.07996856 0.1163074 0.24194026]\n [ 0.11034841 -0.07429668 0.14674097]\n [-0.05570783 -0.07790165 0.2093001 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIHCeFeY8zFcCUhpRSlIwBbJRLMowBdJRHQKJE0khRqGl1fZQoaAZoCWgPQwgi+yDLgnkUwJSGlFKUaBVLMmgWR0CiRKgc94eLdX2UKGgGaAloD0MI1T4djxl4FMCUhpRSlGgVSzJoFkdAokSBiTdLx3V9lChoBmgJaA9DCCtpxTcUPgvAlIaUUpRoFUsyaBZHQKJEWmJm/WV1fZQoaAZoCWgPQwiTqBd8moMQwJSGlFKUaBVLMmgWR0CiRbMhgVoIdX2UKGgGaAloD0MIlSu8y0W8DcCUhpRSlGgVSzJoFkdAokWJE6T4cnV9lChoBmgJaA9DCJVm8zgMBgXAlIaUUpRoFUsyaBZHQKJFYmR/3Fl1fZQoaAZoCWgPQwiHTs+7sUADwJSGlFKUaBVLMmgWR0CiRTtN8E3bdX2UKGgGaAloD0MItmYrL/n/BMCUhpRSlGgVSzJoFkdAokaIt16mf3V9lChoBmgJaA9DCI//AkGALAfAlIaUUpRoFUsyaBZHQKJGXqgRK6F1fZQoaAZoCWgPQwjuJvim6VMNwJSGlFKUaBVLMmgWR0CiRjgLZzxPdX2UKGgGaAloD0MIM1GE1O3MDsCUhpRSlGgVSzJoFkdAokYQ5imVJXV9lChoBmgJaA9DCCk+PiE7jwHAlIaUUpRoFUsyaBZHQKJHhVsk6cR1fZQoaAZoCWgPQwjBx2DFqRYSwJSGlFKUaBVLMmgWR0CiR1tI065odX2UKGgGaAloD0MIblD7rZ0o/b+UhpRSlGgVSzJoFkdAokc0nE2pAHV9lChoBmgJaA9DCCcvMgG/JgTAlIaUUpRoFUsyaBZHQKJHDYao/A11fZQoaAZoCWgPQwgG8uzyre8EwJSGlFKUaBVLMmgWR0CiSEsS9M9KdX2UKGgGaAloD0MIuAa2SrCYC8CUhpRSlGgVSzJoFkdAokgg5R0lq3V9lChoBmgJaA9DCD7MXrad9gfAlIaUUpRoFUsyaBZHQKJH+jIJZ4h1fZQoaAZoCWgPQwjv5NNjW3YSwJSGlFKUaBVLMmgWR0CiR9MchkiEdX2UKGgGaAloD0MIbhlwlpKl/L+UhpRSlGgVSzJoFkdAokkRFPSDy3V9lChoBmgJaA9DCGjqdYvAGAXAlIaUUpRoFUsyaBZHQKJI5u2JBPd1fZQoaAZoCWgPQwi0VrQ5zu0AwJSGlFKUaBVLMmgWR0CiSMA9V3lkdX2UKGgGaAloD0MIsCDNWDTdAcCUhpRSlGgVSzJoFkdAokiZFZxJd3V9lChoBmgJaA9DCNfbZirEIw3AlIaUUpRoFUsyaBZHQKJJ2kyDZlF1fZQoaAZoCWgPQwjPg7uzdtsEwJSGlFKUaBVLMmgWR0CiSbBiCrcTdX2UKGgGaAloD0MIeT9uv3wyAsCUhpRSlGgVSzJoFkdAokmJvHcUNHV9lChoBmgJaA9DCP/MID6w4wrAlIaUUpRoFUsyaBZHQKJJYrSVnmJ1fZQoaAZoCWgPQwiPxwxUxt8CwJSGlFKUaBVLMmgWR0CiSrA6ltTDdX2UKGgGaAloD0MI0xQBTu/iBMCUhpRSlGgVSzJoFkdAokqGEbo8p3V9lChoBmgJaA9DCKA01CgkeRHAlIaUUpRoFUsyaBZHQKJKX18LKFJ1fZQoaAZoCWgPQwgTEJNwIU8GwJSGlFKUaBVLMmgWR0CiSjhX8wYcdX2UKGgGaAloD0MIiGTIsfWM/r+UhpRSlGgVSzJoFkdAokuHpUxVQ3V9lChoBmgJaA9DCATHZdzUYAjAlIaUUpRoFUsyaBZHQKJLXXFLnLd1fZQoaAZoCWgPQwi+amXCL7X+v5SGlFKUaBVLMmgWR0CiSzbZnL7odX2UKGgGaAloD0MIUfUrnQ8/FMCUhpRSlGgVSzJoFkdAoksPwqiGnHV9lChoBmgJaA9DCMOdCyO9KAfAlIaUUpRoFUsyaBZHQKJMW2Yv38J1fZQoaAZoCWgPQwgNjSeCOI8PwJSGlFKUaBVLMmgWR0CiTDFImPYGdX2UKGgGaAloD0MIfGKdKt/zDMCUhpRSlGgVSzJoFkdAokwKnDR+jXV9lChoBmgJaA9DCJPi4xOykw/AlIaUUpRoFUsyaBZHQKJL450bLlp1fZQoaAZoCWgPQwghPxu5bpoRwJSGlFKUaBVLMmgWR0CiTTCP6sQvdX2UKGgGaAloD0MIFR+fkJ03C8CUhpRSlGgVSzJoFkdAok0GYF7laXV9lChoBmgJaA9DCHYXKCmwIAHAlIaUUpRoFUsyaBZHQKJM365XlsB1fZQoaAZoCWgPQwgLR5BKsUMFwJSGlFKUaBVLMmgWR0CiTLiQtBfKdX2UKGgGaAloD0MIbhYvFoYIDcCUhpRSlGgVSzJoFkdAok32OGTLXHV9lChoBmgJaA9DCAgAjj17vhXAlIaUUpRoFUsyaBZHQKJNzA6+36R1fZQoaAZoCWgPQwjMDYY6rEATwJSGlFKUaBVLMmgWR0CiTaVV5rxidX2UKGgGaAloD0MIUMWNW8w/EsCUhpRSlGgVSzJoFkdAok1+J79hqnV9lChoBmgJaA9DCN4dGavNjx3AlIaUUpRoFUsyaBZHQKJOwKuSwGJ1fZQoaAZoCWgPQwimmIOgo7UNwJSGlFKUaBVLMmgWR0CiTpaRZEDydX2UKGgGaAloD0MIARQjS+Z4FsCUhpRSlGgVSzJoFkdAok5v7xd6cHV9lChoBmgJaA9DCCbhQh7BLQHAlIaUUpRoFUsyaBZHQKJOSPPszEd1fZQoaAZoCWgPQwgL73IR34kJwJSGlFKUaBVLMmgWR0CiT5Z7gKnfdX2UKGgGaAloD0MIiXyXUpdsAMCUhpRSlGgVSzJoFkdAok9sVclgMXV9lChoBmgJaA9DCGNGeHsQYgbAlIaUUpRoFUsyaBZHQKJPRZ4fOlh1fZQoaAZoCWgPQwiSkbOwp93/v5SGlFKUaBVLMmgWR0CiTx5/LDAKdX2UKGgGaAloD0MIcGHdeHc0FsCUhpRSlGgVSzJoFkdAolBboOhCdHV9lChoBmgJaA9DCNvcmJ6whAvAlIaUUpRoFUsyaBZHQKJQMWzF+/h1fZQoaAZoCWgPQwgpQup29tURwJSGlFKUaBVLMmgWR0CiUAq2KEWZdX2UKGgGaAloD0MIJsPxfAZ0BsCUhpRSlGgVSzJoFkdAok/jmW+oL3V9lChoBmgJaA9DCBSX4xWIXgrAlIaUUpRoFUsyaBZHQKJRQ+eOGTN1fZQoaAZoCWgPQwj4pBMJphoIwJSGlFKUaBVLMmgWR0CiURnUc4o7dX2UKGgGaAloD0MIRluVRPZBE8CUhpRSlGgVSzJoFkdAolDzSqlxfnV9lChoBmgJaA9DCIvEBDV8y/2/lIaUUpRoFUsyaBZHQKJQzFH8TBZ1fZQoaAZoCWgPQwhKea2E7lIPwJSGlFKUaBVLMmgWR0CiUix/ViF1dX2UKGgGaAloD0MIuf/IdOiUBMCUhpRSlGgVSzJoFkdAolICY9gWrXV9lChoBmgJaA9DCGtEMA4uXfC/lIaUUpRoFUsyaBZHQKJR28U21lZ1fZQoaAZoCWgPQwjTbB6HwZwIwJSGlFKUaBVLMmgWR0CiUbS3b212dX2UKGgGaAloD0MIJR+7C5R0FsCUhpRSlGgVSzJoFkdAolMO9SMtLHV9lChoBmgJaA9DCCbirfNvFwTAlIaUUpRoFUsyaBZHQKJS5N1QqI91fZQoaAZoCWgPQwiqEI/Ey+MTwJSGlFKUaBVLMmgWR0CiUr5VOsT4dX2UKGgGaAloD0MI6E1FKoydGMCUhpRSlGgVSzJoFkdAolKXQv6CUXV9lChoBmgJaA9DCCvCTUaVgQzAlIaUUpRoFUsyaBZHQKJT6E/0NBp1fZQoaAZoCWgPQwhUOlj/50AUwJSGlFKUaBVLMmgWR0CiU74oqkM1dX2UKGgGaAloD0MICJChYwf1B8CUhpRSlGgVSzJoFkdAolOXdGiHqXV9lChoBmgJaA9DCK0yU1p/qwTAlIaUUpRoFUsyaBZHQKJTcEaESM91fZQoaAZoCWgPQwjcDg2LUfcWwJSGlFKUaBVLMmgWR0CiVKiXQdCFdX2UKGgGaAloD0MILzIBv0aSCsCUhpRSlGgVSzJoFkdAolR+gnMMZ3V9lChoBmgJaA9DCHRfzmxX2BHAlIaUUpRoFUsyaBZHQKJUV9WIXTF1fZQoaAZoCWgPQwjLK9fbZioHwJSGlFKUaBVLMmgWR0CiVDCxeLNwdX2UKGgGaAloD0MIcNI0KJpnCcCUhpRSlGgVSzJoFkdAolV7lvIfbXV9lChoBmgJaA9DCGhaYmU0sgfAlIaUUpRoFUsyaBZHQKJVUVs1sLx1fZQoaAZoCWgPQwgNN+Dzw2gNwJSGlFKUaBVLMmgWR0CiVSqmbb1zdX2UKGgGaAloD0MIRZvj3Cb8AsCUhpRSlGgVSzJoFkdAolUDslb/wXV9lChoBmgJaA9DCIicvp6veQvAlIaUUpRoFUsyaBZHQKJWRCSA6Ml1fZQoaAZoCWgPQwgd5zbhXgkVwJSGlFKUaBVLMmgWR0CiVhoA4n4PdX2UKGgGaAloD0MIle8ZidAIEMCUhpRSlGgVSzJoFkdAolXzURWcSXV9lChoBmgJaA9DCEaWzLG8qwjAlIaUUpRoFUsyaBZHQKJVzCkXUH91fZQoaAZoCWgPQwj85ChAFIz5v5SGlFKUaBVLMmgWR0CiVx3nQpnZdX2UKGgGaAloD0MIYf91btqMDMCUhpRSlGgVSzJoFkdAolbz0lJHy3V9lChoBmgJaA9DCETcnEoG4AbAlIaUUpRoFUsyaBZHQKJWzSHdoFp1fZQoaAZoCWgPQwg4EmiwqTMQwJSGlFKUaBVLMmgWR0CiVqX2EkB0dX2UKGgGaAloD0MIvM/x0eIMFsCUhpRSlGgVSzJoFkdAolf8mhM8HXV9lChoBmgJaA9DCM0d/S/XYgjAlIaUUpRoFUsyaBZHQKJX0mhufmN1fZQoaAZoCWgPQwj+tFGdDmQLwJSGlFKUaBVLMmgWR0CiV6u+qR2bdX2UKGgGaAloD0MIKhprf2e7/r+UhpRSlGgVSzJoFkdAoleEk+otMHV9lChoBmgJaA9DCA5N2ekHVRHAlIaUUpRoFUsyaBZHQKJYy/1QIld1fZQoaAZoCWgPQwjBOo4fKm0MwJSGlFKUaBVLMmgWR0CiWKHhjvuxdX2UKGgGaAloD0MIcv4mFCIg8r+UhpRSlGgVSzJoFkdAolh7Pt2LYXV9lChoBmgJaA9DCP2GiQYpeA/AlIaUUpRoFUsyaBZHQKJYVETg2qF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.27 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.9", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -3.7820809427648783, "std_reward": 1.027588359398332, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-20T21:16:46.498189"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a88934672ac098594f4e541b86e368a5b7eb96c457c8cef6cbdc6302d855d30
3
+ size 2387