File size: 8,263 Bytes
8a736a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import transformers
import numpy as np
from datasets import load_dataset
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
from transformers import DataCollatorForSeq2Seq
import evaluate
import numpy as np
from transformers import Seq2SeqTrainingArguments
from transformers import Seq2SeqTrainer
from torch.utils.data import DataLoader
from transformers import pipeline
from transformers import AdamW
from accelerate import Accelerator
from transformers import get_scheduler
from huggingface_hub import Repository, get_full_repo_name
from tqdm.auto import tqdm
import torch
from torch import Tensor

#load in dataset, setup tokenizer

raw_datasets = load_dataset("aatherton2024/eng-nah-svo")
model_checkpoint = "aatherton2024/eng-nah-svo-cpt"

if False:
    def get_training_corpus(raw_datasets):
        return (
            raw_datasets["train"][i : i + 1000]
            for i in range(0, len(raw_datasets["train"]), 1000)
        )

    training_corpus = get_training_corpus(raw_datasets)
    old_tokenizer = AutoTokenizer.from_pretrained("gpt2")
    tokenizer = old_tokenizer.train_new_from_iterator(training_corpus, 52000)

    tokenizer.save_pretrained("eng-nah-svo-cpt")
    tokenizer.push_to_hub("eng-nah-svo-cpt")

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
#contants
max_length = 128

#scan dataset, storing lists of english and french words then returning the tokenization of them
def preprocess_function(examples):
    inputs = examples["en"]
    targets = examples["fr"]
    model_inputs = tokenizer(
        inputs, text_target=targets, max_length=max_length, truncation=True
    )
    return model_inputs

#apply preprocessing in one go to all splits of the dataset
tokenized_datasets = raw_datasets.map(
    preprocess_function,
    batched=True,
    remove_columns=raw_datasets["train"].column_names,
)

# #model choice for this problem
if False:
    model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)

else:
    from transformers import BertConfig, BertLMHeadModel
    from transformers import AutoModel
    # config = BertConfig(tokenizer.vocab_size, hidden_size=300,
    #                     num_hidden_layers=2, num_attention_heads=2, is_decoder=True,
    #                     add_cross_attention=True)
    # model = BertLMHeadModel(config)
    #model = AutoModel.from_pretrained("bert-base-cased")
    model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-fr")

#data collator takes tokenizer and the model to deal with padding for dynamic batching
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

#Using BLEU as our metric for this problem
metric = evaluate.load("sacrebleu")

#simple method to return test metrics
def compute_metrics(eval_preds):
    preds, labels = eval_preds
    # In case the model returns more than the prediction logits
    if isinstance(preds, tuple):
        preds = preds[0]

    decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

    # Replace -100s in the labels as we can't decode them
    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    # Some simple post-processing
    decoded_preds = [pred.strip() for pred in decoded_preds]
    decoded_labels = [[label.strip()] for label in decoded_labels]

    result = metric.compute(predictions=decoded_preds, references=decoded_labels)
    return {"bleu": result["score"]}

### We now enter the fine-tuning phase of our model structure ###


#definition of seq2seq training arguments --- figure what these are/use case
args = Seq2SeqTrainingArguments(
    f"eng-nah-svo-translation",
    evaluation_strategy="no",
    save_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=32,
    per_device_eval_batch_size=64,
    weight_decay=0.01,
    save_total_limit=3,
    num_train_epochs=3,
    predict_with_generate=True,
    fp16=False,
    push_to_hub=True,
)

#pass all information to trainer
trainer = Seq2SeqTrainer(
    model,
    args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["test"],
    data_collator=data_collator,
    tokenizer=tokenizer,
    compute_metrics=compute_metrics,
)

print("evaluate1")
trainer.evaluate(max_length=max_length)
print("trainer train 1")
trainer.train()
print("evaluate 2")
trainer.evaluate(max_length=max_length)
trainer.push_to_hub(tags="translation", commit_message="Training complete")



tokenized_datasets.set_format("torch")
train_dataloader = DataLoader(
    tokenized_datasets["train"],
    shuffle=True,
    collate_fn=data_collator,
    batch_size=8,
)
eval_dataloader = DataLoader(
    tokenized_datasets["test"], collate_fn=data_collator, batch_size=8
)

model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)


optimizer = AdamW(model.parameters(), lr=2e-5)



accelerator = Accelerator()
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
    model, optimizer, train_dataloader, eval_dataloader
)



num_train_epochs = 3
num_update_steps_per_epoch = len(train_dataloader)
num_training_steps = num_train_epochs * num_update_steps_per_epoch

lr_scheduler = get_scheduler(
    "linear",
    optimizer=optimizer,
    num_warmup_steps=0,
    num_training_steps=num_training_steps,
)



model_name = "model"

output_dir = "./output"
repo = Repository("/mnt/storage/aatherton/hf_eng_fra_trans", clone_from="aatherton2024/hf_eng_fra_trans")


def postprocess(predictions, labels):
    predictions = predictions.cpu().numpy()
    labels = labels.cpu().numpy()

    decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)

    # Replace -100 in the labels as we can't decode them.
    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    # Some simple post-processing
    decoded_preds = [pred.strip() for pred in decoded_preds]
    decoded_labels = [[label.strip()] for label in decoded_labels]
    return decoded_preds, decoded_labels



progress_bar = tqdm(range(num_training_steps))

for epoch in range(num_train_epochs):
    # Training
    model.train()
    for batch in train_dataloader:
        outputs = model(**batch)
        loss = outputs.loss
        accelerator.backward(loss)

        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
        progress_bar.update(1)

    # Evaluation
    model.eval()
    for batch in tqdm(eval_dataloader):
        with torch.no_grad():
            generated_tokens = accelerator.unwrap_model(model).generate(
                batch["input_ids"],
                attention_mask=batch["attention_mask"],
                max_length=128,
            )
        labels = batch["labels"]

        # Necessary to pad predictions and labels for being gathered
        generated_tokens = accelerator.pad_across_processes(
            generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
        )
        labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)

        predictions_gathered = accelerator.gather(generated_tokens)
        labels_gathered = accelerator.gather(labels)

        decoded_preds, decoded_labels = postprocess(predictions_gathered, labels_gathered)
        metric.add_batch(predictions=decoded_preds, references=decoded_labels)

    results = metric.compute()
    print(f"epoch {epoch}, BLEU score: {results['score']:.2f}")

    # Save and upload
    accelerator.wait_for_everyone()
    unwrapped_model = accelerator.unwrap_model(model)
    unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
    if accelerator.is_main_process:
        tokenizer.save_pretrained(output_dir)
        repo.push_to_hub(
            commit_message=f"Training in progress epoch {epoch}", blocking=False
        )



# Replace this with your own checkpoint
model_checkpoint = "aatherton2024/hf_eng_fra_reproduction"
translator = pipeline("translation", model=model_checkpoint)
translator("Default to expanded threads")
translator(
    "Unable to import %1 using the OFX importer plugin. This file is not the correct format."
)