File size: 8,263 Bytes
8a736a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import transformers
import numpy as np
from datasets import load_dataset
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoTokenizer
from transformers import DataCollatorForSeq2Seq
import evaluate
import numpy as np
from transformers import Seq2SeqTrainingArguments
from transformers import Seq2SeqTrainer
from torch.utils.data import DataLoader
from transformers import pipeline
from transformers import AdamW
from accelerate import Accelerator
from transformers import get_scheduler
from huggingface_hub import Repository, get_full_repo_name
from tqdm.auto import tqdm
import torch
from torch import Tensor
#load in dataset, setup tokenizer
raw_datasets = load_dataset("aatherton2024/eng-nah-svo")
model_checkpoint = "aatherton2024/eng-nah-svo-cpt"
if False:
def get_training_corpus(raw_datasets):
return (
raw_datasets["train"][i : i + 1000]
for i in range(0, len(raw_datasets["train"]), 1000)
)
training_corpus = get_training_corpus(raw_datasets)
old_tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer = old_tokenizer.train_new_from_iterator(training_corpus, 52000)
tokenizer.save_pretrained("eng-nah-svo-cpt")
tokenizer.push_to_hub("eng-nah-svo-cpt")
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
#contants
max_length = 128
#scan dataset, storing lists of english and french words then returning the tokenization of them
def preprocess_function(examples):
inputs = examples["en"]
targets = examples["fr"]
model_inputs = tokenizer(
inputs, text_target=targets, max_length=max_length, truncation=True
)
return model_inputs
#apply preprocessing in one go to all splits of the dataset
tokenized_datasets = raw_datasets.map(
preprocess_function,
batched=True,
remove_columns=raw_datasets["train"].column_names,
)
# #model choice for this problem
if False:
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
else:
from transformers import BertConfig, BertLMHeadModel
from transformers import AutoModel
# config = BertConfig(tokenizer.vocab_size, hidden_size=300,
# num_hidden_layers=2, num_attention_heads=2, is_decoder=True,
# add_cross_attention=True)
# model = BertLMHeadModel(config)
#model = AutoModel.from_pretrained("bert-base-cased")
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-fr")
#data collator takes tokenizer and the model to deal with padding for dynamic batching
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
#Using BLEU as our metric for this problem
metric = evaluate.load("sacrebleu")
#simple method to return test metrics
def compute_metrics(eval_preds):
preds, labels = eval_preds
# In case the model returns more than the prediction logits
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
# Replace -100s in the labels as we can't decode them
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds = [pred.strip() for pred in decoded_preds]
decoded_labels = [[label.strip()] for label in decoded_labels]
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
return {"bleu": result["score"]}
### We now enter the fine-tuning phase of our model structure ###
#definition of seq2seq training arguments --- figure what these are/use case
args = Seq2SeqTrainingArguments(
f"eng-nah-svo-translation",
evaluation_strategy="no",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=32,
per_device_eval_batch_size=64,
weight_decay=0.01,
save_total_limit=3,
num_train_epochs=3,
predict_with_generate=True,
fp16=False,
push_to_hub=True,
)
#pass all information to trainer
trainer = Seq2SeqTrainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
data_collator=data_collator,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
print("evaluate1")
trainer.evaluate(max_length=max_length)
print("trainer train 1")
trainer.train()
print("evaluate 2")
trainer.evaluate(max_length=max_length)
trainer.push_to_hub(tags="translation", commit_message="Training complete")
tokenized_datasets.set_format("torch")
train_dataloader = DataLoader(
tokenized_datasets["train"],
shuffle=True,
collate_fn=data_collator,
batch_size=8,
)
eval_dataloader = DataLoader(
tokenized_datasets["test"], collate_fn=data_collator, batch_size=8
)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
optimizer = AdamW(model.parameters(), lr=2e-5)
accelerator = Accelerator()
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
num_train_epochs = 3
num_update_steps_per_epoch = len(train_dataloader)
num_training_steps = num_train_epochs * num_update_steps_per_epoch
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps,
)
model_name = "model"
output_dir = "./output"
repo = Repository("/mnt/storage/aatherton/hf_eng_fra_trans", clone_from="aatherton2024/hf_eng_fra_trans")
def postprocess(predictions, labels):
predictions = predictions.cpu().numpy()
labels = labels.cpu().numpy()
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds = [pred.strip() for pred in decoded_preds]
decoded_labels = [[label.strip()] for label in decoded_labels]
return decoded_preds, decoded_labels
progress_bar = tqdm(range(num_training_steps))
for epoch in range(num_train_epochs):
# Training
model.train()
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
# Evaluation
model.eval()
for batch in tqdm(eval_dataloader):
with torch.no_grad():
generated_tokens = accelerator.unwrap_model(model).generate(
batch["input_ids"],
attention_mask=batch["attention_mask"],
max_length=128,
)
labels = batch["labels"]
# Necessary to pad predictions and labels for being gathered
generated_tokens = accelerator.pad_across_processes(
generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
)
labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
predictions_gathered = accelerator.gather(generated_tokens)
labels_gathered = accelerator.gather(labels)
decoded_preds, decoded_labels = postprocess(predictions_gathered, labels_gathered)
metric.add_batch(predictions=decoded_preds, references=decoded_labels)
results = metric.compute()
print(f"epoch {epoch}, BLEU score: {results['score']:.2f}")
# Save and upload
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
if accelerator.is_main_process:
tokenizer.save_pretrained(output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False
)
# Replace this with your own checkpoint
model_checkpoint = "aatherton2024/hf_eng_fra_reproduction"
translator = pipeline("translation", model=model_checkpoint)
translator("Default to expanded threads")
translator(
"Unable to import %1 using the OFX importer plugin. This file is not the correct format."
) |