|
Map: 0%| | 0/7292 [00:00<?, ? examples/s]
Map: 27%|βββ | 2000/7292 [00:00<00:00, 9056.99 examples/s]
Map: 82%|βββββββββ | 6000/7292 [00:00<00:00, 17405.96 examples/s]
Map: 100%|ββββββββββ| 7292/7292 [00:00<00:00, 17292.17 examples/s] |
|
Map: 0%| | 0/1001 [00:00<?, ? examples/s]
Map: 100%|ββββββββββ| 1001/1001 [00:00<00:00, 28511.75 examples/s] |
|
Map: 0%| | 0/1001 [00:00<?, ? examples/s]
Map: 100%|ββββββββββ| 1001/1001 [00:00<00:00, 30926.57 examples/s] |
|
Downloading (β¦)lve/main/config.json: 0%| | 0.00/570 [00:00<?, ?B/s]
Downloading (β¦)lve/main/config.json: 100%|ββββββββββ| 570/570 [00:00<00:00, 1.74MB/s] |
|
Downloading model.safetensors: 0%| | 0.00/436M [00:00<?, ?B/s]
Downloading model.safetensors: 2%|β | 10.5M/436M [00:00<00:05, 71.5MB/s]
Downloading model.safetensors: 5%|β | 21.0M/436M [00:00<00:04, 86.4MB/s]
Downloading model.safetensors: 10%|β | 41.9M/436M [00:00<00:03, 102MB/s]
Downloading model.safetensors: 14%|ββ | 62.9M/436M [00:00<00:03, 108MB/s]
Downloading model.safetensors: 19%|ββ | 83.9M/436M [00:00<00:03, 111MB/s]
Downloading model.safetensors: 24%|βββ | 105M/436M [00:00<00:02, 112MB/s]
Downloading model.safetensors: 29%|βββ | 126M/436M [00:01<00:02, 113MB/s]
Downloading model.safetensors: 34%|ββββ | 147M/436M [00:01<00:02, 114MB/s]
Downloading model.safetensors: 39%|ββββ | 168M/436M [00:01<00:02, 114MB/s]
Downloading model.safetensors: 43%|βββββ | 189M/436M [00:01<00:02, 114MB/s]
Downloading model.safetensors: 48%|βββββ | 210M/436M [00:01<00:02, 112MB/s]
Downloading model.safetensors: 53%|ββββββ | 231M/436M [00:02<00:01, 114MB/s]
Downloading model.safetensors: 58%|ββββββ | 252M/436M [00:02<00:01, 113MB/s]
Downloading model.safetensors: 63%|βββββββ | 273M/436M [00:02<00:01, 114MB/s]
Downloading model.safetensors: 67%|βββββββ | 294M/436M [00:02<00:01, 115MB/s]
Downloading model.safetensors: 72%|ββββββββ | 315M/436M [00:02<00:01, 114MB/s]
Downloading model.safetensors: 77%|ββββββββ | 336M/436M [00:03<00:00, 113MB/s]
Downloading model.safetensors: 82%|βββββββββ | 357M/436M [00:03<00:00, 115MB/s]
Downloading model.safetensors: 87%|βββββββββ | 377M/436M [00:03<00:00, 115MB/s]
Downloading model.safetensors: 91%|ββββββββββ| 398M/436M [00:03<00:00, 114MB/s]
Downloading model.safetensors: 96%|ββββββββββ| 419M/436M [00:03<00:00, 115MB/s]
Downloading model.safetensors: 100%|ββββββββββ| 436M/436M [00:03<00:00, 115MB/s]
Downloading model.safetensors: 100%|ββββββββββ| 436M/436M [00:03<00:00, 112MB/s] |
|
You're using a GPT2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding. |
|
Traceback (most recent call last): |
|
File "/mnt/storage/aatherton/hf_synth_trans/synth_translation.py", line 131, in <module> |
|
trainer.evaluate(max_length=max_length) |
|
File "/mnt/storage/aatherton/anaconda3/envs/nmt/lib/python3.11/site-packages/transformers/trainer_seq2seq.py", line 159, in evaluate |
|
return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
File "/mnt/storage/aatherton/anaconda3/envs/nmt/lib/python3.11/site-packages/transformers/trainer.py", line 2972, in evaluate |
|
output = eval_loop( |
|
^^^^^^^^^^ |
|
File "/mnt/storage/aatherton/anaconda3/envs/nmt/lib/python3.11/site-packages/transformers/trainer.py", line 3161, in evaluation_loop |
|
loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
File "/mnt/storage/aatherton/anaconda3/envs/nmt/lib/python3.11/site-packages/transformers/trainer_seq2seq.py", line 282, in prediction_step |
|
generated_tokens = self.model.generate(**inputs, **gen_kwargs) |
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
|
File "/mnt/storage/aatherton/anaconda3/envs/nmt/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context |
|
return func(*args, **kwargs) |
|
^^^^^^^^^^^^^^^^^^^^^ |
|
File "/mnt/storage/aatherton/anaconda3/envs/nmt/lib/python3.11/site-packages/transformers/generation/utils.py", line 1402, in generate |
|
self._validate_model_class() |
|
File "/mnt/storage/aatherton/anaconda3/envs/nmt/lib/python3.11/site-packages/transformers/generation/utils.py", line 1197, in _validate_model_class |
|
raise TypeError(exception_message) |
|
TypeError: The current model class (BertModel) is not compatible with `.generate()`, as it doesn't have a language model head. Please use one of the following classes instead: {'BertLMHeadModel'} |
|
|