File size: 13,701 Bytes
78e46e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
---
license: apache-2.0
base_model: nferruz/ProtGPT2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: output_hemo_aug_4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# output_hemo_aug_4

This model is a fine-tuned version of [nferruz/ProtGPT2](https://huggingface.co/nferruz/ProtGPT2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9627
- Accuracy: 0.3978

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 200.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 9.4301        | 1.0   | 6    | 8.6845          | 0.0244   |
| 8.4172        | 2.0   | 12   | 7.8149          | 0.0811   |
| 7.6869        | 3.0   | 18   | 7.2012          | 0.1554   |
| 7.1731        | 4.0   | 24   | 6.9139          | 0.1828   |
| 6.8807        | 5.0   | 30   | 6.6238          | 0.1955   |
| 6.6009        | 6.0   | 36   | 6.3847          | 0.1935   |
| 6.4347        | 7.0   | 42   | 6.2341          | 0.2063   |
| 6.2831        | 8.0   | 48   | 6.0964          | 0.2141   |
| 6.1728        | 9.0   | 54   | 5.9864          | 0.2209   |
| 6.0805        | 10.0  | 60   | 5.8936          | 0.2317   |
| 5.9959        | 11.0  | 66   | 5.8161          | 0.2405   |
| 5.925         | 12.0  | 72   | 5.7456          | 0.2385   |
| 5.8787        | 13.0  | 78   | 5.6646          | 0.2483   |
| 5.7996        | 14.0  | 84   | 5.5901          | 0.2493   |
| 5.7312        | 15.0  | 90   | 5.5216          | 0.2532   |
| 5.6751        | 16.0  | 96   | 5.4695          | 0.2590   |
| 5.6076        | 17.0  | 102  | 5.4216          | 0.2620   |
| 5.569         | 18.0  | 108  | 5.3735          | 0.2620   |
| 5.5037        | 19.0  | 114  | 5.3272          | 0.2630   |
| 5.4681        | 20.0  | 120  | 5.2856          | 0.2698   |
| 5.4225        | 21.0  | 126  | 5.2559          | 0.2717   |
| 5.3805        | 22.0  | 132  | 5.2126          | 0.2766   |
| 5.3527        | 23.0  | 138  | 5.1884          | 0.2757   |
| 5.3033        | 24.0  | 144  | 5.1539          | 0.2796   |
| 5.2635        | 25.0  | 150  | 5.1110          | 0.2854   |
| 5.2411        | 26.0  | 156  | 5.0882          | 0.2854   |
| 5.1972        | 27.0  | 162  | 5.0575          | 0.2903   |
| 5.163         | 28.0  | 168  | 5.0293          | 0.2913   |
| 5.1273        | 29.0  | 174  | 5.0047          | 0.2903   |
| 5.1032        | 30.0  | 180  | 4.9817          | 0.2952   |
| 5.0726        | 31.0  | 186  | 4.9583          | 0.2952   |
| 5.0405        | 32.0  | 192  | 4.9355          | 0.2952   |
| 5.007         | 33.0  | 198  | 4.9184          | 0.2952   |
| 4.9897        | 34.0  | 204  | 4.8911          | 0.2972   |
| 4.9416        | 35.0  | 210  | 4.8628          | 0.2972   |
| 4.9245        | 36.0  | 216  | 4.8499          | 0.2981   |
| 4.901         | 37.0  | 222  | 4.8263          | 0.3030   |
| 4.8713        | 38.0  | 228  | 4.8035          | 0.3030   |
| 4.845         | 39.0  | 234  | 4.7874          | 0.3060   |
| 4.8052        | 40.0  | 240  | 4.7535          | 0.3040   |
| 4.7786        | 41.0  | 246  | 4.7313          | 0.3060   |
| 4.7501        | 42.0  | 252  | 4.7175          | 0.3089   |
| 4.7221        | 43.0  | 258  | 4.6978          | 0.3118   |
| 4.7038        | 44.0  | 264  | 4.6785          | 0.3109   |
| 4.681         | 45.0  | 270  | 4.6661          | 0.3128   |
| 4.6566        | 46.0  | 276  | 4.6532          | 0.3157   |
| 4.632         | 47.0  | 282  | 4.6361          | 0.3157   |
| 4.618         | 48.0  | 288  | 4.6162          | 0.3196   |
| 4.5928        | 49.0  | 294  | 4.5987          | 0.3245   |
| 4.5716        | 50.0  | 300  | 4.5848          | 0.3216   |
| 4.5485        | 51.0  | 306  | 4.5721          | 0.3245   |
| 4.5324        | 52.0  | 312  | 4.5579          | 0.3196   |
| 4.5038        | 53.0  | 318  | 4.5423          | 0.3196   |
| 4.4831        | 54.0  | 324  | 4.5240          | 0.3265   |
| 4.4347        | 55.0  | 330  | 4.5087          | 0.3255   |
| 4.4218        | 56.0  | 336  | 4.4850          | 0.3255   |
| 4.3939        | 57.0  | 342  | 4.4791          | 0.3275   |
| 4.3766        | 58.0  | 348  | 4.4640          | 0.3265   |
| 4.3472        | 59.0  | 354  | 4.4471          | 0.3275   |
| 4.3241        | 60.0  | 360  | 4.4334          | 0.3275   |
| 4.2919        | 61.0  | 366  | 4.4296          | 0.3304   |
| 4.2678        | 62.0  | 372  | 4.4281          | 0.3343   |
| 4.2515        | 63.0  | 378  | 4.4120          | 0.3372   |
| 4.2244        | 64.0  | 384  | 4.4038          | 0.3343   |
| 4.2129        | 65.0  | 390  | 4.3826          | 0.3392   |
| 4.1882        | 66.0  | 396  | 4.3834          | 0.3372   |
| 4.1503        | 67.0  | 402  | 4.3738          | 0.3372   |
| 4.1398        | 68.0  | 408  | 4.3596          | 0.3372   |
| 4.115         | 69.0  | 414  | 4.3376          | 0.3412   |
| 4.1052        | 70.0  | 420  | 4.3330          | 0.3412   |
| 4.0932        | 71.0  | 426  | 4.3295          | 0.3412   |
| 4.0573        | 72.0  | 432  | 4.3111          | 0.3412   |
| 4.0449        | 73.0  | 438  | 4.3048          | 0.3441   |
| 4.0165        | 74.0  | 444  | 4.2936          | 0.3460   |
| 3.9936        | 75.0  | 450  | 4.2815          | 0.3509   |
| 3.967         | 76.0  | 456  | 4.2686          | 0.3539   |
| 3.9524        | 77.0  | 462  | 4.2697          | 0.3509   |
| 3.9287        | 78.0  | 468  | 4.2546          | 0.3529   |
| 3.9092        | 79.0  | 474  | 4.2484          | 0.3539   |
| 3.8907        | 80.0  | 480  | 4.2420          | 0.3539   |
| 3.8704        | 81.0  | 486  | 4.2418          | 0.3529   |
| 3.8499        | 82.0  | 492  | 4.2265          | 0.3548   |
| 3.8325        | 83.0  | 498  | 4.2089          | 0.3548   |
| 3.8024        | 84.0  | 504  | 4.2058          | 0.3568   |
| 3.8058        | 85.0  | 510  | 4.2039          | 0.3558   |
| 3.7888        | 86.0  | 516  | 4.1906          | 0.3578   |
| 3.7622        | 87.0  | 522  | 4.1792          | 0.3617   |
| 3.746         | 88.0  | 528  | 4.1819          | 0.3578   |
| 3.7196        | 89.0  | 534  | 4.1789          | 0.3597   |
| 3.7046        | 90.0  | 540  | 4.1610          | 0.3607   |
| 3.7078        | 91.0  | 546  | 4.1515          | 0.3607   |
| 3.6687        | 92.0  | 552  | 4.1752          | 0.3607   |
| 3.6559        | 93.0  | 558  | 4.1287          | 0.3636   |
| 3.6401        | 94.0  | 564  | 4.1569          | 0.3646   |
| 3.6281        | 95.0  | 570  | 4.1234          | 0.3627   |
| 3.5978        | 96.0  | 576  | 4.1270          | 0.3695   |
| 3.5951        | 97.0  | 582  | 4.1188          | 0.3646   |
| 3.5679        | 98.0  | 588  | 4.1282          | 0.3685   |
| 3.5618        | 99.0  | 594  | 4.1089          | 0.3646   |
| 3.5404        | 100.0 | 600  | 4.1090          | 0.3695   |
| 3.5255        | 101.0 | 606  | 4.1039          | 0.3646   |
| 3.5111        | 102.0 | 612  | 4.1010          | 0.3695   |
| 3.5015        | 103.0 | 618  | 4.0889          | 0.3705   |
| 3.493         | 104.0 | 624  | 4.0826          | 0.3705   |
| 3.5643        | 105.0 | 630  | 4.0915          | 0.3754   |
| 3.4543        | 106.0 | 636  | 4.0912          | 0.3724   |
| 3.4517        | 107.0 | 642  | 4.0844          | 0.3754   |
| 3.4387        | 108.0 | 648  | 4.0664          | 0.3754   |
| 3.4274        | 109.0 | 654  | 4.0885          | 0.3763   |
| 3.4241        | 110.0 | 660  | 4.0583          | 0.3793   |
| 3.4016        | 111.0 | 666  | 4.0627          | 0.3803   |
| 3.383         | 112.0 | 672  | 4.0626          | 0.3812   |
| 3.3709        | 113.0 | 678  | 4.0414          | 0.3871   |
| 3.3646        | 114.0 | 684  | 4.0562          | 0.3822   |
| 3.3456        | 115.0 | 690  | 4.0361          | 0.3861   |
| 3.3369        | 116.0 | 696  | 4.0524          | 0.3851   |
| 3.3136        | 117.0 | 702  | 4.0424          | 0.3842   |
| 3.307         | 118.0 | 708  | 4.0477          | 0.3861   |
| 3.2954        | 119.0 | 714  | 4.0287          | 0.3851   |
| 3.2887        | 120.0 | 720  | 4.0392          | 0.3900   |
| 3.2776        | 121.0 | 726  | 4.0191          | 0.3910   |
| 3.2527        | 122.0 | 732  | 4.0339          | 0.3910   |
| 3.259         | 123.0 | 738  | 4.0064          | 0.3930   |
| 3.2559        | 124.0 | 744  | 4.0285          | 0.3881   |
| 3.2335        | 125.0 | 750  | 4.0151          | 0.3930   |
| 3.2318        | 126.0 | 756  | 4.0277          | 0.3900   |
| 3.2266        | 127.0 | 762  | 3.9929          | 0.3978   |
| 3.2051        | 128.0 | 768  | 3.9945          | 0.3978   |
| 3.2009        | 129.0 | 774  | 4.0291          | 0.3930   |
| 3.1791        | 130.0 | 780  | 3.9956          | 0.3930   |
| 3.1759        | 131.0 | 786  | 4.0012          | 0.3969   |
| 3.1622        | 132.0 | 792  | 4.0107          | 0.3949   |
| 3.1559        | 133.0 | 798  | 4.0090          | 0.3939   |
| 3.1521        | 134.0 | 804  | 4.0028          | 0.3910   |
| 3.1353        | 135.0 | 810  | 4.0033          | 0.3939   |
| 3.1427        | 136.0 | 816  | 3.9995          | 0.3939   |
| 3.1276        | 137.0 | 822  | 3.9963          | 0.3920   |
| 3.1228        | 138.0 | 828  | 3.9996          | 0.3978   |
| 3.1039        | 139.0 | 834  | 3.9928          | 0.3988   |
| 3.097         | 140.0 | 840  | 3.9969          | 0.3969   |
| 3.083         | 141.0 | 846  | 3.9918          | 0.3949   |
| 3.0844        | 142.0 | 852  | 3.9900          | 0.3969   |
| 3.077         | 143.0 | 858  | 3.9812          | 0.3959   |
| 3.0601        | 144.0 | 864  | 3.9948          | 0.3959   |
| 3.0669        | 145.0 | 870  | 3.9938          | 0.3959   |
| 3.0515        | 146.0 | 876  | 3.9895          | 0.3978   |
| 3.0405        | 147.0 | 882  | 3.9803          | 0.3988   |
| 3.029         | 148.0 | 888  | 3.9856          | 0.3969   |
| 3.0342        | 149.0 | 894  | 3.9828          | 0.3969   |
| 3.0137        | 150.0 | 900  | 3.9977          | 0.3978   |
| 3.0277        | 151.0 | 906  | 3.9793          | 0.3998   |
| 3.0005        | 152.0 | 912  | 3.9779          | 0.3998   |
| 3.0027        | 153.0 | 918  | 3.9891          | 0.3988   |
| 3.0034        | 154.0 | 924  | 3.9687          | 0.4008   |
| 2.9853        | 155.0 | 930  | 3.9887          | 0.3978   |
| 2.9947        | 156.0 | 936  | 3.9860          | 0.4027   |
| 2.9768        | 157.0 | 942  | 3.9900          | 0.4027   |
| 2.9752        | 158.0 | 948  | 3.9993          | 0.3988   |
| 2.9773        | 159.0 | 954  | 3.9694          | 0.4018   |
| 2.9662        | 160.0 | 960  | 3.9924          | 0.3998   |
| 2.9661        | 161.0 | 966  | 4.0089          | 0.3988   |
| 2.9488        | 162.0 | 972  | 3.9749          | 0.3988   |
| 2.9487        | 163.0 | 978  | 3.9932          | 0.3978   |
| 2.9482        | 164.0 | 984  | 3.9987          | 0.3988   |
| 2.9624        | 165.0 | 990  | 3.9627          | 0.3978   |
| 2.9524        | 166.0 | 996  | 3.9791          | 0.4008   |
| 2.9357        | 167.0 | 1002 | 3.9969          | 0.3998   |
| 2.9323        | 168.0 | 1008 | 3.9854          | 0.4008   |
| 2.9334        | 169.0 | 1014 | 3.9778          | 0.4008   |
| 2.9228        | 170.0 | 1020 | 3.9859          | 0.4027   |
| 2.9305        | 171.0 | 1026 | 3.9821          | 0.4037   |
| 2.9239        | 172.0 | 1032 | 3.9876          | 0.4066   |
| 2.9181        | 173.0 | 1038 | 3.9792          | 0.4057   |
| 2.9162        | 174.0 | 1044 | 3.9731          | 0.4037   |
| 2.9171        | 175.0 | 1050 | 3.9796          | 0.4066   |
| 2.9132        | 176.0 | 1056 | 3.9914          | 0.4047   |
| 2.9168        | 177.0 | 1062 | 3.9826          | 0.4047   |
| 2.8974        | 178.0 | 1068 | 3.9753          | 0.4057   |
| 2.8954        | 179.0 | 1074 | 3.9766          | 0.4057   |
| 2.9003        | 180.0 | 1080 | 3.9865          | 0.4027   |
| 2.9012        | 181.0 | 1086 | 3.9835          | 0.4047   |
| 2.8994        | 182.0 | 1092 | 3.9802          | 0.4047   |
| 2.8918        | 183.0 | 1098 | 3.9811          | 0.4066   |
| 2.8893        | 184.0 | 1104 | 3.9810          | 0.4057   |
| 2.8865        | 185.0 | 1110 | 3.9852          | 0.4076   |
| 2.8784        | 186.0 | 1116 | 3.9805          | 0.4057   |
| 2.8875        | 187.0 | 1122 | 3.9781          | 0.4066   |
| 2.8948        | 188.0 | 1128 | 3.9831          | 0.4057   |
| 2.8927        | 189.0 | 1134 | 3.9837          | 0.4066   |
| 2.8739        | 190.0 | 1140 | 3.9822          | 0.4057   |
| 2.8919        | 191.0 | 1146 | 3.9792          | 0.4066   |
| 2.8713        | 192.0 | 1152 | 3.9800          | 0.4057   |
| 2.8798        | 193.0 | 1158 | 3.9854          | 0.4047   |
| 2.8835        | 194.0 | 1164 | 3.9845          | 0.4057   |
| 2.878         | 195.0 | 1170 | 3.9820          | 0.4057   |
| 2.8931        | 196.0 | 1176 | 3.9816          | 0.4057   |
| 2.8662        | 197.0 | 1182 | 3.9830          | 0.4057   |
| 2.8734        | 198.0 | 1188 | 3.9841          | 0.4057   |
| 2.8825        | 199.0 | 1194 | 3.9830          | 0.4057   |
| 2.8825        | 200.0 | 1200 | 3.9827          | 0.4057   |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1