File size: 5,043 Bytes
46b13e5
02f08a5
46b13e5
 
 
 
02f08a5
 
e927df4
 
02f08a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46b13e5
7306d4d
46b13e5
29b7f4b
 
46b13e5
 
de92dcb
 
 
f5bd27d
 
 
2311b90
f5bd27d
 
 
15cec8d
 
fee670d
 
 
 
b878c15
 
 
fee670d
 
 
 
 
 
15cec8d
fee670d
 
46b13e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02f08a5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- 01-ai/Yi-9B
license_name: yi-license
license_link: LICENSE
model-index:
- name: bigyi-15b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 20.94
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigyi-15b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 19.94
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigyi-15b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 2.34
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigyi-15b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.94
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigyi-15b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 4.29
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigyi-15b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 22.25
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=abacusai/bigyi-15b
      name: Open LLM Leaderboard
---
# bigyi-15b

I recently made [bigstral-12b](https://huggingface.co/abacusai/bigstral-12b-32k) and then I saw this new awesome model [yi-9b](https://huggingface.co/01-ai/Yi-9B) and decided to make an embiggened version.

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

Bigyi-15b is a base / completion model, so there is no chat template.

It has a 4k context.

## Example

Here is a recipe for Mai Tai:\n\n1: 
> 3 parts rum, 2: 3 parts pineapple juice, 3: half a cup of lime juice, 4: 6 to 8 fresh or frozen pineapple chunks, 5: crushed ice.
> Mix all ingredients except ice and pour into glasses with ice. Garnish with a pineapple slice.

Here is an implementation of 2-sum in golang:
> ```go
> func twoSum(nums []int, target int) []int {
>   if len(nums) <= 1 { return nil }
>   m := map[int] bool{}
>   for i := range(nums) {{
>     n = nums[i]
>
>     // find the complement of current number in map
>     comp = target - n
>     if comp in m { return [m[comp], i+1 ] }
>     else { m[n] = true }
>   }}
>   return nil
> }
> ```


## Merge Details
### Merge Method

This model was merged using the passthrough merge method.

### Models Merged

The following models were included in the merge:
* [01-ai/Yi-9B](https://huggingface.co/01-ai/Yi-9B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
dtype: float16
merge_method: passthrough
slices:
- sources:
  - layer_range: [0, 12]
    model: 01-ai/Yi-9B
- sources:
  - layer_range: [6, 18]
    model: 01-ai/Yi-9B
- sources:
  - layer_range: [12, 24]
    model: 01-ai/Yi-9B
- sources:
  - layer_range: [18, 30]
    model: 01-ai/Yi-9B
- sources:
  - layer_range: [24, 36]
    model: 01-ai/Yi-9B
- sources:
  - layer_range: [30, 42]
    model: 01-ai/Yi-9B
- sources:
  - layer_range: [36, 48]
    model: 01-ai/Yi-9B

```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abacusai__bigyi-15b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |12.95|
|IFEval (0-Shot)    |20.94|
|BBH (3-Shot)       |19.94|
|MATH Lvl 5 (4-Shot)| 2.34|
|GPQA (0-shot)      | 7.94|
|MuSR (0-shot)      | 4.29|
|MMLU-PRO (5-shot)  |22.25|