File size: 2,857 Bytes
11db9cd d77cc25 11db9cd d77cc25 11db9cd d77cc25 11db9cd d77cc25 11db9cd d77cc25 11db9cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: openai/whisper-base.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: abbenedekwhisper-base.en-finetuning2-D3K
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# abbenedekwhisper-base.en-finetuning2-D3K
This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7781
- Cer: 64.7190
- Wer: 119.5364
- Ser: 100.0
- Cer Clean: 3.5058
- Wer Clean: 6.2914
- Ser Clean: 7.0175
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-08
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Ser | Cer Clean | Wer Clean | Ser Clean |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|:-----:|:---------:|:---------:|:---------:|
| 7.5369 | 0.53 | 100 | 6.7220 | 63.7730 | 128.1457 | 100.0 | 4.1180 | 6.9536 | 8.7719 |
| 7.0363 | 1.06 | 200 | 6.1829 | 65.0529 | 123.8411 | 100.0 | 3.2832 | 5.6291 | 7.0175 |
| 6.417 | 1.6 | 300 | 5.7959 | 64.1625 | 121.1921 | 100.0 | 3.2832 | 5.6291 | 7.0175 |
| 6.0146 | 2.13 | 400 | 5.4587 | 64.7746 | 121.8543 | 100.0 | 3.6728 | 6.6225 | 7.8947 |
| 5.6687 | 2.66 | 500 | 5.2287 | 65.3311 | 120.5298 | 100.0 | 3.7284 | 6.6225 | 7.8947 |
| 5.3902 | 3.19 | 600 | 5.0691 | 65.1085 | 121.1921 | 100.0 | 3.5615 | 6.2914 | 7.0175 |
| 5.2512 | 3.72 | 700 | 4.9358 | 64.7190 | 120.1987 | 100.0 | 3.2832 | 5.9603 | 6.1404 |
| 5.1258 | 4.26 | 800 | 4.8451 | 64.7190 | 119.5364 | 100.0 | 3.5058 | 6.2914 | 7.0175 |
| 5.0472 | 4.79 | 900 | 4.7950 | 64.7190 | 119.5364 | 100.0 | 3.5058 | 6.2914 | 7.0175 |
| 4.9871 | 5.32 | 1000 | 4.7781 | 64.7190 | 119.5364 | 100.0 | 3.5058 | 6.2914 | 7.0175 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.14.5
- Tokenizers 0.15.2
|