--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - adiren7/darija_speech_to_text metrics: - wer model-index: - name: Whisper Small Ar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Darija Common Voice 11.0 type: adiren7/darija_speech_to_text args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 31.60677169623761 --- # Whisper Small Ar This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Darija Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3091 - Wer: 31.6068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3514 | 2.9586 | 1000 | 0.3091 | 31.6068 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0