abdoelsayed
commited on
Commit
·
5984321
1
Parent(s):
f937d4b
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- ar
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
library_name: transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# llama-7b-v2-Receipt-Key-Extraction
|
13 |
+
|
14 |
+
llama-7b-v2-Receipt-Key-Extraction is a 7 billion parameter based on LLamA v1
|
15 |
+
|
16 |
+
[AMuRD: Annotated Multilingual Receipts Dataset for Cross-lingual Key Information Extraction and Classification](https://arxiv.org/abs/2309.09800)
|
17 |
+
|
18 |
+
## Uses
|
19 |
+
|
20 |
+
The model is intended for research-only use in English and Arabic for key information extraction for items in receipts.
|
21 |
+
|
22 |
+
## How to Get Started with the Model
|
23 |
+
|
24 |
+
Use the code below to get started with the model.
|
25 |
+
|
26 |
+
```bibtex
|
27 |
+
# pip install -q transformers
|
28 |
+
|
29 |
+
import torch
|
30 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
31 |
+
|
32 |
+
checkpoint = "abdoelsayed/llama-7b-v2-Receipt-Key-Extraction"
|
33 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
+
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint, model_max_length=512,
|
36 |
+
padding_side="right",
|
37 |
+
use_fast=False,)
|
38 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
39 |
+
|
40 |
+
def generate_response(instruction, input_text, max_new_tokens=100, temperature=0.1, num_beams=4 ,top_k=40):
|
41 |
+
prompt = f"Below is an instruction that describes a task, paired with an input that provides further context.\n\n### Instruction:\n{instruction}\n\n### Input:\n{input_text}\n\n### Response:"
|
42 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
43 |
+
input_ids = inputs["input_ids"].to(device)
|
44 |
+
generation_config = GenerationConfig(
|
45 |
+
temperature=temperature,
|
46 |
+
top_p=top_p,
|
47 |
+
top_k=top_k,
|
48 |
+
num_beams=num_beams,
|
49 |
+
)
|
50 |
+
with torch.no_grad():
|
51 |
+
outputs = model.generate(input_ids,generation_config=generation_config, max_new_tokens=max_new_tokens)
|
52 |
+
outputs = tokenizer.decode(outputs.sequences[0])
|
53 |
+
return output.split("### Response:")[-1].strip().replace("</s>","")
|
54 |
+
|
55 |
+
instruction = "Extract the class, Brand, Weight, Number of units, Size of units, Price, T.Price, Pack, Unit from the following sentence"
|
56 |
+
input_text = "Americana Okra zero 400 gm"
|
57 |
+
|
58 |
+
response = generate_response(instruction, input_text)
|
59 |
+
print(response)
|
60 |
+
|
61 |
+
```
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
## How to Cite
|
66 |
+
|
67 |
+
Please cite this model using this format.
|
68 |
+
|
69 |
+
```bibtex
|
70 |
+
@misc{abdallah2023amurd,
|
71 |
+
title={AMuRD: Annotated Multilingual Receipts Dataset for Cross-lingual Key Information Extraction and Classification},
|
72 |
+
author={Abdelrahman Abdallah and Mahmoud Abdalla and Mohamed Elkasaby and Yasser Elbendary and Adam Jatowt},
|
73 |
+
year={2023},
|
74 |
+
eprint={2309.09800},
|
75 |
+
archivePrefix={arXiv},
|
76 |
+
primaryClass={cs.CL}
|
77 |
+
}
|
78 |
+
```
|