abdouaziiz commited on
Commit
c542d41
1 Parent(s): 3f7fb84

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -4
README.md CHANGED
@@ -76,7 +76,67 @@ The following hyperparameters were used during training:
76
  | 27000 | 0.084400 | 0.367826 | 0.212565 |
77
 
78
 
79
- ### Framework versions
80
- - Transformers 4.11
81
- - Pytorch 1.10.0
82
- - Datasets 1.13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  | 27000 | 0.084400 | 0.367826 | 0.212565 |
77
 
78
 
79
+ ## Usage
80
+ The model can be used directly (without a language model) as follows:
81
+ ```python
82
+ import librosa
83
+ import warnings
84
+ from transformers import AutoProcessor, AutoModelForCTC
85
+ from datasets import Dataset, DatasetDict
86
+ from datasets import load_metric
87
+
88
+ wer_metric = load_metric("wer")
89
+
90
+ wolof = pd.read_csv('Test.csv') # wolof contains the columns of file , and transcription
91
+ wolof = DatasetDict({'test': Dataset.from_pandas(wolof)})
92
+
93
+ chars_to_ignore_regex = '[\"\?\.\!\-\;\:\(\)\,]'
94
+
95
+ def remove_special_characters(batch):
96
+ batch["transcription"] = re.sub(chars_to_ignore_regex, '', batch["transcription"]).lower() + " "
97
+ return batch
98
+
99
+
100
+ wolof = wolof.map(remove_special_characters)
101
+
102
+ processor = AutoProcessor.from_pretrained("abdouaziiz/wav2vec2-xls-r-300m-wolof")
103
+ model = AutoModelForCTC.from_pretrained("abdouaziiz/wav2vec2-xls-r-300m-wolof")
104
+
105
+ warnings.filterwarnings("ignore")
106
+ def speech_file_to_array_fn(batch):
107
+ speech_array, sampling_rate = librosa.load(batch["file"], sr = 16000)
108
+ batch["speech"] = speech_array.astype('float16')
109
+ batch["sampling_rate"] = sampling_rate
110
+ batch["target_text"] = batch["transcription"]
111
+ return batch
112
+
113
+ wolof = wolof.map(speech_file_to_array_fn, remove_columns=wolof.column_names["test"], num_proc=1)
114
+
115
+ def map_to_result(batch):
116
+ model.to("cuda")
117
+ input_values = processor(
118
+ batch["speech"],
119
+ sampling_rate=batch["sampling_rate"],
120
+ return_tensors="pt"
121
+ ).input_values.to("cuda")
122
+
123
+ with torch.no_grad():
124
+ logits = model(input_values).logits
125
+ pred_ids = torch.argmax(logits, dim=-1)
126
+ batch["pred_str"] = processor.batch_decode(pred_ids)[0]
127
+
128
+ return batch
129
+
130
+ results = wolof["test"].map(map_to_result)
131
+
132
+ print("Test WER: {:.3f}".format(wer_metric.compute(predictions=results["pred_str"], references=results["transcription"])))
133
+
134
+ ```
135
+
136
+ ## PS:
137
+
138
+ The results obtained can be improved by using :
139
+
140
+ - Wav2vec2 + language model .
141
+ - Build a Spellcheker from the text of the data
142
+ - Sentence Edit Distance