--- library_name: transformers language: - uz license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - risqaliyevds/uzbek_ner metrics: - precision - recall - f1 - accuracy model-index: - name: Uzbek NER model results: [] --- # Uzbek NER model This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the Uzbek Ner dataset. It achieves the following results on the evaluation set: - Loss: 0.1421 - Precision: 0.6071 - Recall: 0.6482 - F1: 0.6270 - Accuracy: 0.9486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1671 | 0.5758 | 150 | 0.1632 | 0.5260 | 0.6425 | 0.5785 | 0.9402 | | 0.1453 | 1.1497 | 300 | 0.1481 | 0.5935 | 0.6191 | 0.6061 | 0.9467 | | 0.134 | 1.7255 | 450 | 0.1449 | 0.5936 | 0.6216 | 0.6073 | 0.9480 | | 0.1273 | 2.2994 | 600 | 0.1413 | 0.6217 | 0.6262 | 0.6239 | 0.9493 | | 0.1258 | 2.8752 | 750 | 0.1421 | 0.6071 | 0.6482 | 0.6270 | 0.9486 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.1.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0