abdulmatinomotoso commited on
Commit
7498eb9
·
verified ·
1 Parent(s): 98135ab

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:4900
8
+ - loss:TripletLoss
9
+ base_model: BAAI/bge-m3
10
+ widget:
11
+ - source_sentence: Bawo ni eniyan lasan ṣe le ṣe agbaye ni aye ti o dara julọ?
12
+ sentences:
13
+ - Ewo ni fiimu ti o dara julọ ti agbaye?
14
+ - Bawo ni a ṣe le ṣe agbaye ni aye ti o dara julọ fun gbogbo ati fun iran iwaju
15
+ lati wa?
16
+ - Njẹ aiye yii dara julọ tabi buru?
17
+ - source_sentence: Ni Pokemon ati tẹmpili ti okun, kilode ti o yanilenu Manicy?
18
+ sentences:
19
+ - Kini idi ti Manafy ọmọ-ọwọ ni Pokémon ger ati tẹmpili ti okun?
20
+ - Bawo ni awọn ibeere mi ṣe wa nigbagbogbo nigbagbogbo lori Quora?
21
+ - Ṣe "Pokémon ti o wuyi ati tẹmpili ti Okun" ka akọku?
22
+ - source_sentence: Kini itumo igbesi aye yii?
23
+ sentences:
24
+ - Kini "Gbe igbesi aye rẹ" tumọ si?
25
+ - Kini o ro pe o jẹ itumọ ti igbesi aye?
26
+ - Nitorinaa bawo ni MO ṣe le gba meth lati fulu jade ninu ara ni awọn wakati 2 ṣaaju
27
+ idanwo togbo kan?
28
+ - source_sentence: Nibo ni MO le gba ọpọlọpọ awọn aso deede, awọn aṣọ alekun & awọn
29
+ aṣọ irọlẹ ni goolu ni eti okun?
30
+ sentences:
31
+ - Nibo ni MO le gba ọpọlọpọ awọn awọ ati titobi fun awọn aṣọ awọn alagbaje ni Gold
32
+ Coast?
33
+ - Kini yoo ṣẹlẹ ti o ba jẹ ki o dina nkan bi Facebook tabi Google ni isansa ti iṣan
34
+ neta?
35
+ - Nibo ni MO le gba ikojọpọ ti o lẹwa fun awọn aṣọ igbeyawo ni Sydney?
36
+ - source_sentence: Kini o yẹ ki Ilu India ṣe lori ikọlu UI?
37
+ sentences:
38
+ - Bawo ni MO ṣe sọ Gẹẹsi leta ni ifọrọwanilẹnuwo kan?
39
+ - Lẹhin gbogbo họọsi ti media media ti ṣẹda awọn ikọlu URI Wip, kii yoo jẹ ohun
40
+ itiju fun India ti ko ba kọlu Pakistan?
41
+ - Bawo ni India le dahun si ikọlu ẹru UI?
42
+ pipeline_tag: sentence-similarity
43
+ library_name: sentence-transformers
44
+ metrics:
45
+ - cosine_accuracy
46
+ model-index:
47
+ - name: SentenceTransformer based on BAAI/bge-m3
48
+ results:
49
+ - task:
50
+ type: triplet
51
+ name: Triplet
52
+ dataset:
53
+ name: Unknown
54
+ type: unknown
55
+ metrics:
56
+ - type: cosine_accuracy
57
+ value: 0.804
58
+ name: Cosine Accuracy
59
+ ---
60
+
61
+ # SentenceTransformer based on BAAI/bge-m3
62
+
63
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
64
+
65
+ ## Model Details
66
+
67
+ ### Model Description
68
+ - **Model Type:** Sentence Transformer
69
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
70
+ - **Maximum Sequence Length:** 8192 tokens
71
+ - **Output Dimensionality:** 1024 dimensions
72
+ - **Similarity Function:** Cosine Similarity
73
+ <!-- - **Training Dataset:** Unknown -->
74
+ <!-- - **Language:** Unknown -->
75
+ <!-- - **License:** Unknown -->
76
+
77
+ ### Model Sources
78
+
79
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
80
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
81
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
82
+
83
+ ### Full Model Architecture
84
+
85
+ ```
86
+ SentenceTransformer(
87
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
88
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
89
+ (2): Normalize()
90
+ )
91
+ ```
92
+
93
+ ## Usage
94
+
95
+ ### Direct Usage (Sentence Transformers)
96
+
97
+ First install the Sentence Transformers library:
98
+
99
+ ```bash
100
+ pip install -U sentence-transformers
101
+ ```
102
+
103
+ Then you can load this model and run inference.
104
+ ```python
105
+ from sentence_transformers import SentenceTransformer
106
+
107
+ # Download from the 🤗 Hub
108
+ model = SentenceTransformer("abdulmatinomotoso/BAA-finetuned-yoruba-IR")
109
+ # Run inference
110
+ sentences = [
111
+ 'Kini o yẹ ki Ilu India ṣe lori ikọlu UI?',
112
+ 'Bawo ni India le dahun si ikọlu ẹru UI?',
113
+ 'Lẹhin gbogbo họọsi ti media media ti ṣẹda awọn ikọlu URI Wip, kii yoo jẹ ohun itiju fun India ti ko ba kọlu Pakistan?',
114
+ ]
115
+ embeddings = model.encode(sentences)
116
+ print(embeddings.shape)
117
+ # [3, 1024]
118
+
119
+ # Get the similarity scores for the embeddings
120
+ similarities = model.similarity(embeddings, embeddings)
121
+ print(similarities.shape)
122
+ # [3, 3]
123
+ ```
124
+
125
+ <!--
126
+ ### Direct Usage (Transformers)
127
+
128
+ <details><summary>Click to see the direct usage in Transformers</summary>
129
+
130
+ </details>
131
+ -->
132
+
133
+ <!--
134
+ ### Downstream Usage (Sentence Transformers)
135
+
136
+ You can finetune this model on your own dataset.
137
+
138
+ <details><summary>Click to expand</summary>
139
+
140
+ </details>
141
+ -->
142
+
143
+ <!--
144
+ ### Out-of-Scope Use
145
+
146
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
147
+ -->
148
+
149
+ ## Evaluation
150
+
151
+ ### Metrics
152
+
153
+ #### Triplet
154
+
155
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
156
+
157
+ | Metric | Value |
158
+ |:--------------------|:----------|
159
+ | **cosine_accuracy** | **0.804** |
160
+
161
+ <!--
162
+ ## Bias, Risks and Limitations
163
+
164
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
165
+ -->
166
+
167
+ <!--
168
+ ### Recommendations
169
+
170
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
171
+ -->
172
+
173
+ ## Training Details
174
+
175
+ ### Training Dataset
176
+
177
+ #### Unnamed Dataset
178
+
179
+
180
+ * Size: 4,900 training samples
181
+ * Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
182
+ * Approximate statistics based on the first 1000 samples:
183
+ | | query | pos | neg |
184
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
185
+ | type | string | string | string |
186
+ | details | <ul><li>min: 5 tokens</li><li>mean: 26.19 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 25.71 tokens</li><li>max: 84 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.44 tokens</li><li>max: 107 tokens</li></ul> |
187
+ * Samples:
188
+ | query | pos | neg |
189
+ |:-------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------|
190
+ | <code>Kini idi ti Ilu India ṣe a ko ni ọkan lori ijiroro oloselu kan bi ni AMẸRIKA?</code> | <code>Kini idi ti a ko le ni ijiroro gbangba laarin awọn oloselu ni India bi ọkan ninu wa?</code> | <code>Njẹ eniyan le da quo duro de India Pakistan ariyanjiyan?A ni aisan ati ti o ri eyi lojoojumọ ni olopo?</code> |
191
+ | <code>Kini OnePlus Ọkan?</code> | <code>Bawo ni OnePlus kan?</code> | <code>Kini idi ti OnePlus Ọkan dara?</code> |
192
+ | <code>Ṣe ọkan wa ṣe iṣakoso awọn ẹdun wa?</code> | <code>Bawo ni ọlọgbọn ati awọn eniyan aṣeyọri ṣe ṣakoso awọn ẹdun wọn?</code> | <code>Bawo ni MO ṣe le ṣakoso awọn ẹdun mi rere fun awọn eniyan ti Mo nifẹ ṣugbọn wọn ko bikita nipa mi?</code> |
193
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
194
+ ```json
195
+ {
196
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
197
+ "triplet_margin": 5
198
+ }
199
+ ```
200
+
201
+ ### Evaluation Dataset
202
+
203
+ #### Unnamed Dataset
204
+
205
+
206
+ * Size: 1,000 evaluation samples
207
+ * Columns: <code>query</code>, <code>pos</code>, and <code>neg</code>
208
+ * Approximate statistics based on the first 1000 samples:
209
+ | | query | pos | neg |
210
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
211
+ | type | string | string | string |
212
+ | details | <ul><li>min: 7 tokens</li><li>mean: 25.73 tokens</li><li>max: 106 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 25.48 tokens</li><li>max: 129 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 27.17 tokens</li><li>max: 135 tokens</li></ul> |
213
+ * Samples:
214
+ | query | pos | neg |
215
+ |:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
216
+ | <code>Bawo ni o jẹ ọjọ ebi?</code> | <code>Bawo ni o jẹ ọsan</code> | <code>Njẹ NEBM lueMo ṣẹlẹ lati wa awọn ifiweranṣẹ ti o sọ pe o jẹ iro ati pe ko ni itter</code> |
217
+ | <code>Kini awọn ohun elo akọkọ ti kọnputa kan?</code> | <code>Kini diẹ ninu awọn ẹya akọkọ ti kọnputa kan?Awọn iṣẹ wo ni wọn nṣe iranṣẹ?</code> | <code>Kini awọn eto kọmputa?Kini awọn iṣẹ ti awọn eto kọnputa?</code> |
218
+ | <code>Ṣe o le faffiti Artists fun sokiri Graffiti ni Rockdale County, GA?</code> | <code>Ṣe o le fun awọn ojukokoro fun fun sokiri Graffiti ni Cockdale County, Georgia?</code> | <code>Kini idi ti Graffiti jẹ arufin?</code> |
219
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
220
+ ```json
221
+ {
222
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
223
+ "triplet_margin": 5
224
+ }
225
+ ```
226
+
227
+ ### Training Hyperparameters
228
+ #### Non-Default Hyperparameters
229
+
230
+ - `eval_strategy`: steps
231
+ - `per_device_eval_batch_size`: 3
232
+ - `learning_rate`: 1e-05
233
+ - `num_train_epochs`: 2
234
+ - `warmup_ratio`: 0.1
235
+ - `fp16`: True
236
+ - `batch_sampler`: no_duplicates
237
+
238
+ #### All Hyperparameters
239
+ <details><summary>Click to expand</summary>
240
+
241
+ - `overwrite_output_dir`: False
242
+ - `do_predict`: False
243
+ - `eval_strategy`: steps
244
+ - `prediction_loss_only`: True
245
+ - `per_device_train_batch_size`: 8
246
+ - `per_device_eval_batch_size`: 3
247
+ - `per_gpu_train_batch_size`: None
248
+ - `per_gpu_eval_batch_size`: None
249
+ - `gradient_accumulation_steps`: 1
250
+ - `eval_accumulation_steps`: None
251
+ - `torch_empty_cache_steps`: None
252
+ - `learning_rate`: 1e-05
253
+ - `weight_decay`: 0.0
254
+ - `adam_beta1`: 0.9
255
+ - `adam_beta2`: 0.999
256
+ - `adam_epsilon`: 1e-08
257
+ - `max_grad_norm`: 1.0
258
+ - `num_train_epochs`: 2
259
+ - `max_steps`: -1
260
+ - `lr_scheduler_type`: linear
261
+ - `lr_scheduler_kwargs`: {}
262
+ - `warmup_ratio`: 0.1
263
+ - `warmup_steps`: 0
264
+ - `log_level`: passive
265
+ - `log_level_replica`: warning
266
+ - `log_on_each_node`: True
267
+ - `logging_nan_inf_filter`: True
268
+ - `save_safetensors`: True
269
+ - `save_on_each_node`: False
270
+ - `save_only_model`: False
271
+ - `restore_callback_states_from_checkpoint`: False
272
+ - `no_cuda`: False
273
+ - `use_cpu`: False
274
+ - `use_mps_device`: False
275
+ - `seed`: 42
276
+ - `data_seed`: None
277
+ - `jit_mode_eval`: False
278
+ - `use_ipex`: False
279
+ - `bf16`: False
280
+ - `fp16`: True
281
+ - `fp16_opt_level`: O1
282
+ - `half_precision_backend`: auto
283
+ - `bf16_full_eval`: False
284
+ - `fp16_full_eval`: False
285
+ - `tf32`: None
286
+ - `local_rank`: 0
287
+ - `ddp_backend`: None
288
+ - `tpu_num_cores`: None
289
+ - `tpu_metrics_debug`: False
290
+ - `debug`: []
291
+ - `dataloader_drop_last`: False
292
+ - `dataloader_num_workers`: 0
293
+ - `dataloader_prefetch_factor`: None
294
+ - `past_index`: -1
295
+ - `disable_tqdm`: False
296
+ - `remove_unused_columns`: True
297
+ - `label_names`: None
298
+ - `load_best_model_at_end`: False
299
+ - `ignore_data_skip`: False
300
+ - `fsdp`: []
301
+ - `fsdp_min_num_params`: 0
302
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
303
+ - `fsdp_transformer_layer_cls_to_wrap`: None
304
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
305
+ - `deepspeed`: None
306
+ - `label_smoothing_factor`: 0.0
307
+ - `optim`: adamw_torch
308
+ - `optim_args`: None
309
+ - `adafactor`: False
310
+ - `group_by_length`: False
311
+ - `length_column_name`: length
312
+ - `ddp_find_unused_parameters`: None
313
+ - `ddp_bucket_cap_mb`: None
314
+ - `ddp_broadcast_buffers`: False
315
+ - `dataloader_pin_memory`: True
316
+ - `dataloader_persistent_workers`: False
317
+ - `skip_memory_metrics`: True
318
+ - `use_legacy_prediction_loop`: False
319
+ - `push_to_hub`: False
320
+ - `resume_from_checkpoint`: None
321
+ - `hub_model_id`: None
322
+ - `hub_strategy`: every_save
323
+ - `hub_private_repo`: None
324
+ - `hub_always_push`: False
325
+ - `gradient_checkpointing`: False
326
+ - `gradient_checkpointing_kwargs`: None
327
+ - `include_inputs_for_metrics`: False
328
+ - `include_for_metrics`: []
329
+ - `eval_do_concat_batches`: True
330
+ - `fp16_backend`: auto
331
+ - `push_to_hub_model_id`: None
332
+ - `push_to_hub_organization`: None
333
+ - `mp_parameters`:
334
+ - `auto_find_batch_size`: False
335
+ - `full_determinism`: False
336
+ - `torchdynamo`: None
337
+ - `ray_scope`: last
338
+ - `ddp_timeout`: 1800
339
+ - `torch_compile`: False
340
+ - `torch_compile_backend`: None
341
+ - `torch_compile_mode`: None
342
+ - `dispatch_batches`: None
343
+ - `split_batches`: None
344
+ - `include_tokens_per_second`: False
345
+ - `include_num_input_tokens_seen`: False
346
+ - `neftune_noise_alpha`: None
347
+ - `optim_target_modules`: None
348
+ - `batch_eval_metrics`: False
349
+ - `eval_on_start`: False
350
+ - `use_liger_kernel`: False
351
+ - `eval_use_gather_object`: False
352
+ - `average_tokens_across_devices`: False
353
+ - `prompts`: None
354
+ - `batch_sampler`: no_duplicates
355
+ - `multi_dataset_batch_sampler`: proportional
356
+
357
+ </details>
358
+
359
+ ### Training Logs
360
+ | Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
361
+ |:------:|:----:|:-------------:|:---------------:|:---------------:|
362
+ | 0 | 0 | - | - | 0.86 |
363
+ | 0.1631 | 100 | 4.8244 | 4.7411 | 0.889 |
364
+ | 0.3263 | 200 | 4.7103 | 4.5899 | 0.809 |
365
+ | 0.4894 | 300 | 4.648 | 4.5418 | 0.812 |
366
+ | 0.6525 | 400 | 4.5989 | 4.5085 | 0.799 |
367
+ | 0.8157 | 500 | 4.5699 | 4.4887 | 0.79 |
368
+ | 0.9788 | 600 | 4.5808 | 4.4678 | 0.81 |
369
+ | 1.1419 | 700 | 4.5772 | 4.4608 | 0.808 |
370
+ | 1.3051 | 800 | 4.4925 | 4.4485 | 0.816 |
371
+ | 1.4682 | 900 | 4.4546 | 4.4450 | 0.802 |
372
+ | 1.6313 | 1000 | 4.4472 | 4.4355 | 0.811 |
373
+ | 1.7945 | 1100 | 4.4556 | 4.4271 | 0.811 |
374
+ | 1.9576 | 1200 | 4.4595 | 4.4232 | 0.804 |
375
+
376
+
377
+ ### Framework Versions
378
+ - Python: 3.11.11
379
+ - Sentence Transformers: 3.3.1
380
+ - Transformers: 4.47.1
381
+ - PyTorch: 2.5.1+cu121
382
+ - Accelerate: 1.3.0
383
+ - Datasets: 3.2.0
384
+ - Tokenizers: 0.21.0
385
+
386
+ ## Citation
387
+
388
+ ### BibTeX
389
+
390
+ #### Sentence Transformers
391
+ ```bibtex
392
+ @inproceedings{reimers-2019-sentence-bert,
393
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
394
+ author = "Reimers, Nils and Gurevych, Iryna",
395
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
396
+ month = "11",
397
+ year = "2019",
398
+ publisher = "Association for Computational Linguistics",
399
+ url = "https://arxiv.org/abs/1908.10084",
400
+ }
401
+ ```
402
+
403
+ #### TripletLoss
404
+ ```bibtex
405
+ @misc{hermans2017defense,
406
+ title={In Defense of the Triplet Loss for Person Re-Identification},
407
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
408
+ year={2017},
409
+ eprint={1703.07737},
410
+ archivePrefix={arXiv},
411
+ primaryClass={cs.CV}
412
+ }
413
+ ```
414
+
415
+ <!--
416
+ ## Glossary
417
+
418
+ *Clearly define terms in order to be accessible across audiences.*
419
+ -->
420
+
421
+ <!--
422
+ ## Model Card Authors
423
+
424
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Contact
429
+
430
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
431
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.47.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce88aae0cff95e542d4bf3e07918bf77e768160cf9f9885f5ca7ad89811eb77d
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "tokenizer_class": "XLMRobertaTokenizer",
55
+ "unk_token": "<unk>"
56
+ }