abehandler commited on
Commit
451a7aa
·
verified ·
1 Parent(s): 8826e7d

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: BAAI/bge-small-en-v1.5
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: acquirer growth affects m & a success
13
+ - text: board size affects ceo pay
14
+ - text: market orientation affects entrepreneurship intention
15
+ - text: option sales taxes and fiscal affects ceo pay
16
+ pipeline_tag: text-classification
17
+ inference: true
18
+ ---
19
+
20
+ # SetFit with BAAI/bge-small-en-v1.5
21
+
22
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
23
+
24
+ The model has been trained using an efficient few-shot learning technique that involves:
25
+
26
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
27
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
28
+
29
+ ## Model Details
30
+
31
+ ### Model Description
32
+ - **Model Type:** SetFit
33
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
34
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
35
+ - **Maximum Sequence Length:** 512 tokens
36
+ - **Number of Classes:** 2 classes
37
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
38
+ <!-- - **Language:** Unknown -->
39
+ <!-- - **License:** Unknown -->
40
+
41
+ ### Model Sources
42
+
43
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
44
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
45
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
46
+
47
+ ### Model Labels
48
+ | Label | Examples |
49
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------|
50
+ | 0 | <ul><li>'option sales taxes and fiscal affects ceo pay'</li><li>'market orientation affects entrepreneurship intention'</li></ul> |
51
+ | 1 | <ul><li>'board size affects ceo pay'</li><li>'acquirer growth affects m & a success'</li></ul> |
52
+
53
+ ## Uses
54
+
55
+ ### Direct Use for Inference
56
+
57
+ First install the SetFit library:
58
+
59
+ ```bash
60
+ pip install setfit
61
+ ```
62
+
63
+ Then you can load this model and run inference.
64
+
65
+ ```python
66
+ from setfit import SetFitModel
67
+
68
+ # Download from the 🤗 Hub
69
+ model = SetFitModel.from_pretrained("abehandler/setfit")
70
+ # Run inference
71
+ preds = model("board size affects ceo pay")
72
+ ```
73
+
74
+ <!--
75
+ ### Downstream Use
76
+
77
+ *List how someone could finetune this model on their own dataset.*
78
+ -->
79
+
80
+ <!--
81
+ ### Out-of-Scope Use
82
+
83
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
84
+ -->
85
+
86
+ <!--
87
+ ## Bias, Risks and Limitations
88
+
89
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
90
+ -->
91
+
92
+ <!--
93
+ ### Recommendations
94
+
95
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
96
+ -->
97
+
98
+ ## Training Details
99
+
100
+ ### Training Set Metrics
101
+ | Training set | Min | Median | Max |
102
+ |:-------------|:----|:-------|:----|
103
+ | Word count | 5 | 6.25 | 8 |
104
+
105
+ | Label | Training Sample Count |
106
+ |:------|:----------------------|
107
+ | 0 | 2 |
108
+ | 1 | 2 |
109
+
110
+ ### Training Hyperparameters
111
+ - batch_size: (32, 32)
112
+ - num_epochs: (10, 10)
113
+ - max_steps: -1
114
+ - sampling_strategy: oversampling
115
+ - body_learning_rate: (2e-05, 1e-05)
116
+ - head_learning_rate: 0.01
117
+ - loss: CosineSimilarityLoss
118
+ - distance_metric: cosine_distance
119
+ - margin: 0.25
120
+ - end_to_end: False
121
+ - use_amp: False
122
+ - warmup_proportion: 0.1
123
+ - seed: 42
124
+ - eval_max_steps: -1
125
+ - load_best_model_at_end: False
126
+
127
+ ### Training Results
128
+ | Epoch | Step | Training Loss | Validation Loss |
129
+ |:-----:|:----:|:-------------:|:---------------:|
130
+ | 1.0 | 1 | 0.2472 | - |
131
+
132
+ ### Framework Versions
133
+ - Python: 3.10.12
134
+ - SetFit: 1.0.3
135
+ - Sentence Transformers: 2.7.0
136
+ - Transformers: 4.40.2
137
+ - PyTorch: 2.2.1+cu121
138
+ - Datasets: 2.19.1
139
+ - Tokenizers: 0.19.1
140
+
141
+ ## Citation
142
+
143
+ ### BibTeX
144
+ ```bibtex
145
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
146
+ doi = {10.48550/ARXIV.2209.11055},
147
+ url = {https://arxiv.org/abs/2209.11055},
148
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
149
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
150
+ title = {Efficient Few-Shot Learning Without Prompts},
151
+ publisher = {arXiv},
152
+ year = {2022},
153
+ copyright = {Creative Commons Attribution 4.0 International}
154
+ }
155
+ ```
156
+
157
+ <!--
158
+ ## Glossary
159
+
160
+ *Clearly define terms in order to be accessible across audiences.*
161
+ -->
162
+
163
+ <!--
164
+ ## Model Card Authors
165
+
166
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
167
+ -->
168
+
169
+ <!--
170
+ ## Model Card Contact
171
+
172
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
173
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.40.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b31920f83b1159456d05060f05d2519b93dae07f377d6abc714129153c5cb91
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63528f69c4997cfb2771bc1f3c48803e7122ba7f4ac91965244fcf33f9ff0e1f
3
+ size 3935
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff