--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer base_model: openai/whisper-tiny model-index: - name: whisper-tiny-asr-english results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - type: wer value: 0.31582054309327035 name: Wer --- # whisper-tiny-asr-english This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Wer Ortho: 0.3196 - Wer: 0.3158 - Loss: 0.5223 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Wer Ortho | Wer | Validation Loss | |:-------------:|:-----:|:----:|:---------:|:------:|:---------------:| | 0.4862 | 0.89 | 100 | 0.3917 | 0.3719 | 0.5372 | | 0.3213 | 1.79 | 200 | 0.3769 | 0.3571 | 0.4777 | | 0.1822 | 2.68 | 300 | 0.3726 | 0.3589 | 0.4746 | | 0.068 | 3.57 | 400 | 0.3276 | 0.3146 | 0.4819 | | 0.0333 | 4.46 | 500 | 0.3196 | 0.3158 | 0.5223 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3