ppo-LunarLander-v2 / config.json
abhinig2001's picture
Upload PPO LunarLander-v2 trained agent
a37c984
raw
history blame
15 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f93a0090ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f93a0090d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f93a0090dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f93a0090e50>", "_build": "<function ActorCriticPolicy._build at 0x7f93a0090ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f93a0090f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f93a0094040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f93a00940d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f93a0094160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f93a00941f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f93a0094280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f93a008bae0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670904290743565924, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAM2OmD3Bu4M9mIJ5vsdudb7RFue92QCovQAAAAAAAAAAMy6xvI9SAjl2nVyzNUcZrBTWxTpAq6wzAACAPwAAgD+aDU68uFCVuwYgWj6enPc7wXPFvOhF3zwAAIA/AACAP2BsDL4klCQ/aLMBvWn/CL9LWFO+f6oFPQAAAAAAAAAAgC8sPd0GOj6vESm8v1bCvg8ANT0laD08AAAAAAAAAAAadBk91JeqP6qdMD6NZNq+OLzTvKoNID0AAAAAAAAAAO3tFj7Yo2k/FaCaPuKfJ7+K3GY+L/8OPgAAAAAAAAAAc3gwPlg0fT9VC9k+6Tk8v8qAiD4tuvM9AAAAAAAAAABAC8S9XKNKugk/mjba0isyQJlgO0vRtbUAAIA/AACAP9BIzz52XCA/cbEYvn25Mr/UxeE+ARI8vgAAAAAAAAAAmufrvDYgH7w4hXA+wzC8PUkJmb3b6hs+AACAPwAAgD/mBYQ9gwIlvC89G75KxjC9tZysPQte670AAAAAAACAPxodiL6PB3A+xSglPpEa+76C3oe+IC0ePgAAAAAAAAAAzckdPbYEfrypOpI+3qgzvhUAe72LdVM9AACAPwAAgD/AlYM99gQRuuDyvDgSnDs0R3O+OpYJ3LcAAIA/AACAP/O8ib2ws7A/5WktvhWlCr+GChS+0EqRvQAAAAAAAAAA2oyNvWFlgj1VyJQ+98Wtvo43rj0Lwk89AAAAAAAAAABmfGo90v6Uu48ot77r8gu+kKepO9G+gj8AAIA/AACAPzNtRrwhirI94d2RPa6QlL6XBpg8VEsXPAAAAAAAAAAAJqRCvsCH9T4faa0+dAjWvml2270TTRw+AAAAAAAAAACac7O8SNeOumorxbcXQcOy1uFNulq05DYAAAAAAAAAAABXJL7bGMY+L/WpPiJc5b6KnKi9jooSPgAAAAAAAAAAM6yVvPZkLLqu6q86Fy6lNQe91jk4ING5AACAPwAAAADNbP86QEa1P7IZSj45lnA+iYkTu2kdN70AAAAAAAAAAM32djy3aFY+TMGaPSYPpL4rWfg8FVh5PQAAAAAAAAAAAFLwvMMxfLrhYJi9owWdsj9W6zmulvUzAACAPwAAgD8zcIM91+N1OM5cHLoA6xq1ZbmauruHODkAAAAAAAAAADNV8LzYgp8/1psuvuHLJL/LZ3a9IoaDvQAAAAAAAAAAM3jHvOzZ8bmuxQI9w0Q3MhK1qTp7XXqzAACAPwAAgD8GfG8+zznwPkihhD29yB2/0P6YPvCK6zwAAAAAAAAAAM20PDtxvTG5ePOgvtYn3LKPnzO7vZNSsQAAgD8AAIA/JtvAPW3vRT4EgQ++xX2lvhcm4Dy+5Ya9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISDMWTecbcUCUhpRSlIwBbJRLyowBdJRHQKEbshMajvd1fZQoaAZoCWgPQwieJF0z+epwQJSGlFKUaBVLxmgWR0ChG9lz+3pfdX2UKGgGaAloD0MIIQN5dvloc0CUhpRSlGgVS9poFkdAoRvfyEtdzHV9lChoBmgJaA9DCJPIPsjyWXBAlIaUUpRoFUvAaBZHQKEch2vjfel1fZQoaAZoCWgPQwgj2Lj+XYhxQJSGlFKUaBVL3GgWR0ChHLerdWQwdX2UKGgGaAloD0MI/oAHBlCJckCUhpRSlGgVS9FoFkdAoRy1xsEaEXV9lChoBmgJaA9DCP5itmRV8G5AlIaUUpRoFUuwaBZHQKEcvev6j351fZQoaAZoCWgPQwjF/x1RoaxzQJSGlFKUaBVL12gWR0ChHM8aOxSpdX2UKGgGaAloD0MIstgmFc1sckCUhpRSlGgVTQ4CaBZHQKEc1kBjnV51fZQoaAZoCWgPQwhcxk0NtCxxQJSGlFKUaBVLy2gWR0ChHPlRHf/FdX2UKGgGaAloD0MIw9hCkAO4cUCUhpRSlGgVS9hoFkdAoR0fEOy3TnV9lChoBmgJaA9DCNzz/GnjAnJAlIaUUpRoFUvdaBZHQKEdNDArQPZ1fZQoaAZoCWgPQwiCHmrbMDVyQJSGlFKUaBVL32gWR0ChHWHXumaZdX2UKGgGaAloD0MILpCg+DHJcUCUhpRSlGgVS85oFkdAoR2E3Q2MsHV9lChoBmgJaA9DCDtypDNwwHBAlIaUUpRoFUvBaBZHQKEduw/PgNx1fZQoaAZoCWgPQwipa+19Ki1vQJSGlFKUaBVLw2gWR0ChHgQ/PgNxdX2UKGgGaAloD0MIHeVgNkGkcECUhpRSlGgVS6doFkdAoR4QMDwH7nV9lChoBmgJaA9DCFNYqaDiDnJAlIaUUpRoFUvdaBZHQKEeOruIAOt1fZQoaAZoCWgPQwhxdQDEHfNxQJSGlFKUaBVLvWgWR0ChHkoF3Y+TdX2UKGgGaAloD0MI9IjRcwumc0CUhpRSlGgVS8doFkdAoR5N9nbqQnV9lChoBmgJaA9DCDxM++b+S3FAlIaUUpRoFUu0aBZHQKEeTARkEs91fZQoaAZoCWgPQwhrZFdaxm1zQJSGlFKUaBVLv2gWR0ChHmG29crzdX2UKGgGaAloD0MIoffGEAB1cUCUhpRSlGgVS8NoFkdAoR5sGFBY3nV9lChoBmgJaA9DCHFXryJj03JAlIaUUpRoFUvSaBZHQKEedgmZ3LV1fZQoaAZoCWgPQwirJR3loJNwQJSGlFKUaBVLwmgWR0ChHqmSQo1DdX2UKGgGaAloD0MIMUROXw+JdECUhpRSlGgVTQMCaBZHQKEfFtiQT251fZQoaAZoCWgPQwjUD+oihcpyQJSGlFKUaBVL42gWR0ChHxXPiT+vdX2UKGgGaAloD0MIHjS77q0ickCUhpRSlGgVS9doFkdAoR9xqTKT0XV9lChoBmgJaA9DCObqxyY5dnJAlIaUUpRoFU38AWgWR0ChH6zpHI6sdX2UKGgGaAloD0MI7pV5q25scECUhpRSlGgVS9RoFkdAoR+4i1RceXV9lChoBmgJaA9DCGn/A6xVZ3FAlIaUUpRoFUveaBZHQKEfvzaK1oh1fZQoaAZoCWgPQwhIMqt3OCBzQJSGlFKUaBVL42gWR0ChH8qKgqVhdX2UKGgGaAloD0MI+kMzT26AcUCUhpRSlGgVS9doFkdAoR/NLUTcqXV9lChoBmgJaA9DCLhbkgN213BAlIaUUpRoFUu4aBZHQKEgDRceKbd1fZQoaAZoCWgPQwiWBRN/1BJwQJSGlFKUaBVLtWgWR0ChIBJYLb5/dX2UKGgGaAloD0MIw7ZFmY2ucECUhpRSlGgVS8poFkdAoSB7RrrPdHV9lChoBmgJaA9DCD4kfO9vL3FAlIaUUpRoFUvUaBZHQKEgjqEeyRl1fZQoaAZoCWgPQwgB28GIfRZyQJSGlFKUaBVLyWgWR0ChIJ1ZkkKNdX2UKGgGaAloD0MIDJBoAgVEckCUhpRSlGgVS+FoFkdAoSDPqcEvCnV9lChoBmgJaA9DCMjuAiVFdHNAlIaUUpRoFUvsaBZHQKEg2bS7Xg91fZQoaAZoCWgPQwi7e4DuC4NxQJSGlFKUaBVLymgWR0ChIOKSxJNCdX2UKGgGaAloD0MIqAGDpI/UcUCUhpRSlGgVS85oFkdAoSDife1rqXV9lChoBmgJaA9DCJHQlnNpAnBAlIaUUpRoFUvFaBZHQKEhGUEgW8B1fZQoaAZoCWgPQwjX9nZLMg5zQJSGlFKUaBVL3mgWR0ChIWQmeDnOdX2UKGgGaAloD0MIlx3iH3YycECUhpRSlGgVS7NoFkdAoSGc83dbgXV9lChoBmgJaA9DCJASu7Y323FAlIaUUpRoFUu7aBZHQKEhrXiBGx51fZQoaAZoCWgPQwjNH9PadHVzQJSGlFKUaBVLsWgWR0ChIeD4pMHsdX2UKGgGaAloD0MIuyU5YNcEdECUhpRSlGgVS+doFkdAoSHqE6DGtXV9lChoBmgJaA9DCEetMH2vh3JAlIaUUpRoFUvMaBZHQKEh6PZIxxl1fZQoaAZoCWgPQwiwcmiRbatwQJSGlFKUaBVLz2gWR0ChIgXnIQvpdX2UKGgGaAloD0MIUAEwngHOc0CUhpRSlGgVS81oFkdAoSIhKzzErHV9lChoBmgJaA9DCDGale3DrnFAlIaUUpRoFUvmaBZHQKEiL3Tuv2Z1fZQoaAZoCWgPQwg9nMB0WrFzQJSGlFKUaBVL5mgWR0ChIjlbmlqKdX2UKGgGaAloD0MIKEhsd096ckCUhpRSlGgVS+toFkdAoSKAwwj+rHV9lChoBmgJaA9DCD9SRIYVFHJAlIaUUpRoFUvoaBZHQKEinLUTcqR1fZQoaAZoCWgPQwg2yCQjZ7ZyQJSGlFKUaBVLxmgWR0ChIqk384xUdX2UKGgGaAloD0MIXr71Yf24ckCUhpRSlGgVS61oFkdAoSLrDye7MHV9lChoBmgJaA9DCNYbtcJ0km5AlIaUUpRoFUu4aBZHQKEjDB42S+x1fZQoaAZoCWgPQwgp54u9l0lyQJSGlFKUaBVL2mgWR0ChIwpAlfJFdX2UKGgGaAloD0MIibX4FACTUUCUhpRSlGgVS39oFkdAoSMfhAGB4HV9lChoBmgJaA9DCMvydRk+d3FAlIaUUpRoFUu/aBZHQKEjP7+kxh51fZQoaAZoCWgPQwjS/DGtzfBxQJSGlFKUaBVLsGgWR0ChIz1F6RhddX2UKGgGaAloD0MIw50LI32+ckCUhpRSlGgVS9NoFkdAoSNEwBYFJXV9lChoBmgJaA9DCBUeNLvuFHRAlIaUUpRoFU1PA2gWR0ChI4ZdnkDIdX2UKGgGaAloD0MIT1lN11OTcUCUhpRSlGgVS95oFkdAoSOqFoL5RHV9lChoBmgJaA9DCMuEX+qn6nJAlIaUUpRoFUvaaBZHQKEjqYLLIPt1fZQoaAZoCWgPQwjEzD6PUWFxQJSGlFKUaBVLwmgWR0ChI+c+RoysdX2UKGgGaAloD0MIrVEP0aiOcUCUhpRSlGgVS7JoFkdAoSP6w2VE/nV9lChoBmgJaA9DCLhaJy4HynFAlIaUUpRoFUvNaBZHQKEkLTfBN211fZQoaAZoCWgPQwi2ZFWEWzVzQJSGlFKUaBVL6WgWR0ChJDI371qWdX2UKGgGaAloD0MIomMHlbiZcECUhpRSlGgVS7ZoFkdAoSRHjU/fO3V9lChoBmgJaA9DCPw2xHiNcHNAlIaUUpRoFUvgaBZHQKEkiKFZgXx1fZQoaAZoCWgPQwieBgySvnxyQJSGlFKUaBVL2mgWR0ChJKFSCOFQdX2UKGgGaAloD0MI7x6g+/JAb0CUhpRSlGgVS8JoFkdAoSTEGTs6aXV9lChoBmgJaA9DCCRh304ijnJAlIaUUpRoFUvjaBZHQKEkv7x/d691fZQoaAZoCWgPQwiuuaP/pdZxQJSGlFKUaBVLy2gWR0ChJS1NpM6BdX2UKGgGaAloD0MIzqW4qiy6cUCUhpRSlGgVS9BoFkdAoSU0CHRCyHV9lChoBmgJaA9DCJCDEmZaEnFAlIaUUpRoFUvBaBZHQKElO8g6ltV1fZQoaAZoCWgPQwicpzrkpu5yQJSGlFKUaBVLzGgWR0ChJWa5wwTNdX2UKGgGaAloD0MIAfvo1BVcb0CUhpRSlGgVS79oFkdAoSV2kLx7RnV9lChoBmgJaA9DCLrXSX2ZbXNAlIaUUpRoFUvCaBZHQKEljvxYq5N1fZQoaAZoCWgPQwgNjpJXZ6RuQJSGlFKUaBVLtWgWR0ChJcDZ13dLdX2UKGgGaAloD0MI2uGvyVr3cUCUhpRSlGgVS+NoFkdAoSXbTjNpunV9lChoBmgJaA9DCP96hQV3cHBAlIaUUpRoFUvdaBZHQKEl23PzFuN1fZQoaAZoCWgPQwgllSnmIBRvQJSGlFKUaBVLq2gWR0ChJgCi7CizdX2UKGgGaAloD0MIWOcYkD1mckCUhpRSlGgVS7VoFkdAoSYPZXdTHnV9lChoBmgJaA9DCCKLNPHOaHFAlIaUUpRoFUuuaBZHQKEmHwFTvRZ1fZQoaAZoCWgPQwgUPlsHx4RyQJSGlFKUaBVL9GgWR0ChJlnbh3qzdX2UKGgGaAloD0MIBYwub47ebUCUhpRSlGgVS+BoFkdAoSZmIj4YanV9lChoBmgJaA9DCBKEK6DQIG5AlIaUUpRoFUu6aBZHQKEmb0f5k9V1fZQoaAZoCWgPQwh0zk9x3CtyQJSGlFKUaBVL0GgWR0ChJp90JWvKdX2UKGgGaAloD0MIC0J5H8cNcUCUhpRSlGgVS61oFkdAoSaktEofCHV9lChoBmgJaA9DCAuXVdjMNXJAlIaUUpRoFUvQaBZHQKEm0zQeFL51fZQoaAZoCWgPQwjSbvQxX5tyQJSGlFKUaBVL32gWR0ChJxHTiKixdX2UKGgGaAloD0MIOnR63s3ickCUhpRSlGgVS9loFkdAoSdlbu+h5HV9lChoBmgJaA9DCNeJy/EK7G9AlIaUUpRoFUu+aBZHQKEneVnmJWN1fZQoaAZoCWgPQwhOJm4VxPdwQJSGlFKUaBVLzmgWR0ChJ3mjCYTkdX2UKGgGaAloD0MIq0IDsayFcECUhpRSlGgVS8hoFkdAoSe9cQiA2HV9lChoBmgJaA9DCFM8LqqFgnJAlIaUUpRoFUv3aBZHQKEnyC4jKPp1fZQoaAZoCWgPQwiH3XcMD9hxQJSGlFKUaBVL62gWR0ChKBWnTAnEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}