abhinig2001
commited on
Commit
·
3b32e29
1
Parent(s):
cdf8e97
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +19 -19
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 288.25 +/- 19.02
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2cc36625e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2cc3662670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2cc3662700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2cc3662790>", "_build": "<function ActorCriticPolicy._build at 0x7f2cc3662820>", "forward": "<function ActorCriticPolicy.forward at 0x7f2cc36628b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2cc3662940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2cc36629d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2cc3662a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2cc3662af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2cc3662b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2cc3657e70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670812289077985435, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAGYwQjyukZ263K6COf5IejQMbGI6jc+WuAAAgD8AAIA/M3rJvNYlrz9ih/O+RAHdvlL2QDxuXea8AAAAAAAAAACG3ka+yy9sP3Jy4r5e4ji/WcCnvvvbFr4AAAAAAAAAADO9jTxIsdi6wppkPZ+4ZTxzbIe7w2xJPQAAgD8AAIA/MBKQvv1PHD+VffU9YW4ivw/Hhr7rryY+AAAAAAAAAACzDU09qmawP6nKrD6LeIu+tNxYPZ7Jgj4AAAAAAAAAAABKFb0SE4o8zn/7PU+/PL7KBWA92xZmvQAAAAAAAAAAgL8ivY//Gj4iCxs9n/D4vkM9Z70F4I28AAAAAAAAAAAADy09jRrnPt5/7r3Qoy6/Yx+WPSNI5L0AAAAAAAAAAGYlyb2zxCM/PO6VvRuPR78M8DK+KqCHvAAAAAAAAAAA2qvtPcXhRj6acJW+vke5vkGPyb2eRyu+AAAAAAAAAABmKFK8w/kvuki577PPVfyu6l/Ou6ZNnzMAAIA/AACAPyCrEb6JpUk9et+TPoEnb74nfYw8SZ8YPgAAAAAAAAAAAL8lvY/ejT8emRG+3Z1Yv9DLJb1A61+9AAAAAAAAAABmhiS6FECsui7n6Lqvmti1XU0TOg6FBToAAIA/AACAPzPkUb2uGdO6vsDBPfx6fzt8jN229Z5VPAAAgD8AAIA/ADIOPVIL/7vqvOO8Ou29PKFHZz22M529AACAPwAAgD/6YQ2+2T2xPrTAiD4j9u6+pIXkvYd7ET4AAAAAAAAAAM0ZET22ugq8Lih9vWoIeTxPbYE9rtFQvQAAgD8AAIA/mtrmPDCfAT+iETU8hkUfvwU8qT1GUcu8AAAAAAAAAAAAkw89U5VjP9J4dT186D+/0OINPsPokj0AAAAAAAAAADN5g7zh9JK6NV98tOIj2S9dS4c6+qKGMwAAgD8AAIA/85O9PfYoO7qbAe06fDqctTE4a7sjCAm6AAAAAAAAAABNu8Q9yNjkPpl2P75Fzhy/mOyiPSy0O74AAAAAAAAAAABqR72umZi6ZlCHN4JaeTLCr3e6qpGctgAAgD8AAIA/DdiuPY8mEbrzvU02QqxPManei7vAW3e1AACAPwAAgD9AQo29n1jEu3CaFz3kk6g8IZYgveJxjT0AAAAAAACAP5otZ73hzqm6e9e1PXLSUTwO37g7SoE5vQAAgD8AAIA/Uyeyvn2MkD9qnQK/FG4gvyLKCr+cUwC+AAAAAAAAAACmmMS99mhLOVh3QD6x3Si8dJQCvFWaFD0AAIA/AAAAAGMEhD40TJc/eteIPkdKur7Upy4/ePp4PgAAAAAAAAAAmmkDPdmZej/l2bg9DzA4v1OH9D3izSY8AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaDwRxPknckCUhpRSlIwBbJRLwYwBdJRHQKv3AwLVnVZ1fZQoaAZoCWgPQwgpsWt7u91xQJSGlFKUaBVL3GgWR0Cr9w/wZwXJdX2UKGgGaAloD0MI4xbzc0MXcECUhpRSlGgVS7doFkdAq/cgBgeA/nV9lChoBmgJaA9DCA1slWAxvnJAlIaUUpRoFUvnaBZHQKv3NXLeQ+51fZQoaAZoCWgPQwgyq3e4nT5uQJSGlFKUaBVLq2gWR0Cr9y3t8eCDdX2UKGgGaAloD0MIexLYnAMTckCUhpRSlGgVS8doFkdAq/c5CtzS1HV9lChoBmgJaA9DCGYtBaT9dnFAlIaUUpRoFUubaBZHQKv3QLpiZv11fZQoaAZoCWgPQwgyBADH3qByQJSGlFKUaBVLuWgWR0Cr95xTS9dvdX2UKGgGaAloD0MIjgHZ612nc0CUhpRSlGgVS+NoFkdAq/e3XK8tgHV9lChoBmgJaA9DCIKN6981IHRAlIaUUpRoFUuzaBZHQKv30/Y8Md91fZQoaAZoCWgPQwhPO/w1mdVyQJSGlFKUaBVL42gWR0Cr9+2nsLOSdX2UKGgGaAloD0MIWipvR7gCckCUhpRSlGgVS81oFkdAq/gEI9kjHHV9lChoBmgJaA9DCCmXxi98gXJAlIaUUpRoFUvBaBZHQKv4Qw+t8u11fZQoaAZoCWgPQwhDG4ANiC1xQJSGlFKUaBVLvWgWR0Cr+GHKfWc0dX2UKGgGaAloD0MIFD/G3PWGc0CUhpRSlGgVS8BoFkdAq/hno1UEPnV9lChoBmgJaA9DCPFKkud6l3FAlIaUUpRoFUu4aBZHQKv4Z6uW8h91fZQoaAZoCWgPQwg4Mo/8QUVzQJSGlFKUaBVLv2gWR0Cr+HQJgLJCdX2UKGgGaAloD0MIKV5lbdM8bkCUhpRSlGgVS7BoFkdAq/h9gpjMFHV9lChoBmgJaA9DCHxD4bN1pHJAlIaUUpRoFUu9aBZHQKv4lLW7OFB1fZQoaAZoCWgPQwi+Zrls9HBzQJSGlFKUaBVLymgWR0Cr+Jaf8MuwdX2UKGgGaAloD0MICacFLzpHc0CUhpRSlGgVS7JoFkdAq/jVkpZwGXV9lChoBmgJaA9DCObKoNqgXHRAlIaUUpRoFUvfaBZHQKv40vxpcop1fZQoaAZoCWgPQwhJ9Z1fFFVyQJSGlFKUaBVL0GgWR0Cr+V7+98JEdX2UKGgGaAloD0MIhbacS/HAckCUhpRSlGgVS8BoFkdAq/mb7Kq4pnV9lChoBmgJaA9DCPn2rkEfnHBAlIaUUpRoFUu5aBZHQKv5otCiRGN1fZQoaAZoCWgPQwg/48KBUEByQJSGlFKUaBVLzWgWR0Cr+cOuaF23dX2UKGgGaAloD0MI7x6g+/KZcECUhpRSlGgVS7xoFkdAq/ntDc/MXHV9lChoBmgJaA9DCLR3RluVf3JAlIaUUpRoFUupaBZHQKv6BQj2SMd1fZQoaAZoCWgPQwh4Qq8/SVpyQJSGlFKUaBVL2mgWR0Cr+hzeO4oadX2UKGgGaAloD0MIYeC593CXckCUhpRSlGgVS69oFkdAq/pXRu0kW3V9lChoBmgJaA9DCJW5+Ub0mnNAlIaUUpRoFUvhaBZHQKv6V4L1EmZ1fZQoaAZoCWgPQwiUoSqmUu1xQJSGlFKUaBVLsmgWR0Cr+nAAZKnOdX2UKGgGaAloD0MIe6AVGHJac0CUhpRSlGgVS7xoFkdAq/ptXzUZvXV9lChoBmgJaA9DCOJZgowAw3NAlIaUUpRoFUu8aBZHQKv6fGCqZMN1fZQoaAZoCWgPQwjknq7u2CRyQJSGlFKUaBVLzWgWR0Cr+oPVd5Y6dX2UKGgGaAloD0MIJUBNLZvac0CUhpRSlGgVS8VoFkdAq/qJY1YQrnV9lChoBmgJaA9DCNBGrpuSJ3NAlIaUUpRoFUuzaBZHQKv6zqCYkVx1fZQoaAZoCWgPQwjvxoLCoAlzQJSGlFKUaBVLtWgWR0Cr+u75VOsUdX2UKGgGaAloD0MI2CyXjU5wcUCUhpRSlGgVS6doFkdAq/sAGpuMuXV9lChoBmgJaA9DCE9AE2HD529AlIaUUpRoFUusaBZHQKv6/8NQTEl1fZQoaAZoCWgPQwiWCiqq/lJxQJSGlFKUaBVLmGgWR0Cr+x9IGyHEdX2UKGgGaAloD0MIIcms3uFNckCUhpRSlGgVS99oFkdAq/sqgoPTX3V9lChoBmgJaA9DCFcHQNwVV3NAlIaUUpRoFUvhaBZHQKv7Kl/pdKN1fZQoaAZoCWgPQwhOKhprfwJwQJSGlFKUaBVLrGgWR0Cr+3FYuCf6dX2UKGgGaAloD0MIKc3mcdjjcECUhpRSlGgVS6RoFkdAq/uDV+Zw43V9lChoBmgJaA9DCEs+dhcoK3JAlIaUUpRoFUvaaBZHQKv7tQGfPHF1fZQoaAZoCWgPQwjNeFvptfNxQJSGlFKUaBVLyGgWR0Cr+9PhIe5ndX2UKGgGaAloD0MIbQA2IEI8dECUhpRSlGgVTakBaBZHQKv70BOHnEF1fZQoaAZoCWgPQwjXhLTGYLxxQJSGlFKUaBVLv2gWR0Cr+/v5xiobdX2UKGgGaAloD0MIyenr+ZoUdECUhpRSlGgVS85oFkdAq/wQjSofjnV9lChoBmgJaA9DCJ+tg4O9iURAlIaUUpRoFUtgaBZHQKv8MhQm/nJ1fZQoaAZoCWgPQwjAywwb5bVzQJSGlFKUaBVLxmgWR0Cr/F189fTkdX2UKGgGaAloD0MIMrCO4wd8c0CUhpRSlGgVS+RoFkdAq/yA1P3ztnV9lChoBmgJaA9DCN0lcVYEinFAlIaUUpRoFUvraBZHQKv8qaP0Zm91fZQoaAZoCWgPQwgb8WQ3s5VzQJSGlFKUaBVL5mgWR0Cr/O0cwQDndX2UKGgGaAloD0MIGQEVjqBNcUCUhpRSlGgVS6hoFkdAq/0Q+EAYHnV9lChoBmgJaA9DCDzB/uvco1FAlIaUUpRoFUuXaBZHQKv9D7JGOMl1fZQoaAZoCWgPQwizDHGsS0xzQJSGlFKUaBVL0GgWR0Cr/RfNzKcNdX2UKGgGaAloD0MIbJih8UTDcUCUhpRSlGgVS8ZoFkdAq/0neJpFkXV9lChoBmgJaA9DCP/PYb68o3FAlIaUUpRoFUutaBZHQKv9XVG0/np1fZQoaAZoCWgPQwh6NNWTeVJyQJSGlFKUaBVL2WgWR0Cr/Z9BjWkKdX2UKGgGaAloD0MILbKd7+f7cUCUhpRSlGgVS7ZoFkdAq/2vBciW3XV9lChoBmgJaA9DCGqF6XvNR3NAlIaUUpRoFUvCaBZHQKv92uDjBEd1fZQoaAZoCWgPQwj6l6QyRQF0QJSGlFKUaBVL12gWR0Cr/dXF98Z2dX2UKGgGaAloD0MIob36eGipcUCUhpRSlGgVS6NoFkdAq/3n9cbBGnV9lChoBmgJaA9DCDf+RGUDDXJAlIaUUpRoFUvBaBZHQKv97QNTcZd1fZQoaAZoCWgPQwh95xclqFhwQJSGlFKUaBVLwGgWR0Cr/jqynk1edX2UKGgGaAloD0MIDFpIwCgkcECUhpRSlGgVS6toFkdAq/45SaVlgHV9lChoBmgJaA9DCGJITiZu+nFAlIaUUpRoFUuraBZHQKv+OVTJhfB1fZQoaAZoCWgPQwiz0w/qYqdyQJSGlFKUaBVLyWgWR0Cr/ovicXnAdX2UKGgGaAloD0MIuReYFYoTdECUhpRSlGgVS/JoFkdAq/6kfLcKxHV9lChoBmgJaA9DCIY8ghtp5nBAlIaUUpRoFUvPaBZHQKv+3x7zCk51fZQoaAZoCWgPQwi858ByBK9zQJSGlFKUaBVLq2gWR0Cr/u/9pAUtdX2UKGgGaAloD0MISpf+JemQckCUhpRSlGgVS7xoFkdAq/7xg1FYuHV9lChoBmgJaA9DCKSrdHfdPXJAlIaUUpRoFUvfaBZHQKv/CIZZSvV1fZQoaAZoCWgPQwi8CFOUSxJyQJSGlFKUaBVLpmgWR0Cr/yE8JUo8dX2UKGgGaAloD0MIH4E//Hz8cECUhpRSlGgVS55oFkdAq/8eJ1q33HV9lChoBmgJaA9DCPp9/+ZFX3NAlIaUUpRoFUvOaBZHQKv/N4TK1Xx1fZQoaAZoCWgPQwjcEU4LHjBzQJSGlFKUaBVLw2gWR0Cr/0Sy+pOvdX2UKGgGaAloD0MIdnCwN3E+c0CUhpRSlGgVS7doFkdAq/9ZdIGyHHV9lChoBmgJaA9DCHiAJy2cSXNAlIaUUpRoFUvMaBZHQKv/hj9XLeR1fZQoaAZoCWgPQwghBU8h15xwQJSGlFKUaBVLomgWR0Cr/6cLjPv8dX2UKGgGaAloD0MIwFlKlpPMNECUhpRSlGgVS2ZoFkdAq//NGb1AaHV9lChoBmgJaA9DCKncRC0NHXJAlIaUUpRoFUuWaBZHQKv/18UmD151fZQoaAZoCWgPQwhhpYKKaqtxQJSGlFKUaBVNYQFoFkdAq////Lkjo3V9lChoBmgJaA9DCNIYraPqdHNAlIaUUpRoFUvPaBZHQKwAJaJyhi91fZQoaAZoCWgPQwiFs1vLZNtxQJSGlFKUaBVL02gWR0CsAFpaq0dBdX2UKGgGaAloD0MIluoCXqZEcUCUhpRSlGgVS79oFkdArABvdhy8z3V9lChoBmgJaA9DCM7hWu3haXFAlIaUUpRoFUu3aBZHQKwAb4tYjjd1fZQoaAZoCWgPQwipvvOLEu1wQJSGlFKUaBVLmmgWR0CsAIF2eQMhdX2UKGgGaAloD0MI+prlstHqcECUhpRSlGgVS75oFkdArACH+XJHRXV9lChoBmgJaA9DCKewUkEF3nBAlIaUUpRoFUuqaBZHQKwA7RgJC0F1fZQoaAZoCWgPQwheEJGadpdxQJSGlFKUaBVLrGgWR0CsAPzyrgfmdX2UKGgGaAloD0MIU3qml9jncECUhpRSlGgVS61oFkdArAEVRaX8fnV9lChoBmgJaA9DCFFLcyvE73FAlIaUUpRoFUvVaBZHQKwBRENvwVl1fZQoaAZoCWgPQwiUawpkNjpzQJSGlFKUaBVL4WgWR0CsAUXh4t6HdX2UKGgGaAloD0MIo+pXOt+QckCUhpRSlGgVS5hoFkdArAFS6BiCrnV9lChoBmgJaA9DCMufbwuWiXFAlIaUUpRoFUvOaBZHQKwBZvKlpGp1fZQoaAZoCWgPQwg6kst/yAZvQJSGlFKUaBVLvGgWR0CsAaqOT7l8dX2UKGgGaAloD0MIQmDl0OK7cUCUhpRSlGgVS65oFkdArAHQPf8/EHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 744, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f28f010c310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28f010c3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28f010c430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28f010c4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f28f010c550>", "forward": "<function ActorCriticPolicy.forward at 0x7f28f010c5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28f010c670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f28f010c700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28f010c790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28f010c820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28f010c8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f28f01064e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670891222828151020, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANrdEj5FaGo/ddphPpHcH7+XQJI+OqrLPQAAAAAAAAAAmpr7vKkKILxA+uU9Bdi/vfmj87yiQQW/AACAPwAAgD8z4w+99qwUunrpEjyGdQk54aZRu1pXCzgAAIA/AACAP6AxJz5Em0o+oe4Ev5Akqr69NMW9KmfVvgAAAAAAAAAA2v3AvfhBmz5bjSw+5YwGvxw4zr3qjtE9AAAAAAAAAAAz8xC8e16Tuk/0hrl+XoG0GZtxuv5lnDgAAIA/AACAPw1qKj5f8/c+n2oEvgnaCb9xOXA++tetvAAAAAAAAAAAmhccPHsaj7p1RPE3woEjtvyUxLqURwe3AACAPwAAgD+zklw+ZGSjPls/t777aOS+kqZcPgvvcr4AAAAAAAAAAIDEDz4IJMc+CqVRvj/eGr/2nRA+qqe2vQAAAAAAAAAAMxfxu8OTVrwaUJe73+C7PFKJbj0NIwg6AACAPwAAgD9mI4G975MeP3KgoLwmiRG/SdrgvXXSDT0AAAAAAAAAAGYyHD2cjjG8OiBpvrwcvb2VxXY9GZAOvQAAAAAAAIA/DQzbva2djz4u+48+RL3BvvJuBTy4Ix8+AAAAAAAAAADNXLG6CshIu9c2FLurS408lz6bPDUlc70AAIA/AACAP0Cu0D33og0/6oRvvdFEJb/T8Ag+dkjEOwAAAAAAAAAAJs7rvegoRD9OTwS+k/cnv8L1Wr4zMkq9AAAAAAAAAAAzenY9LzQCPYst/70nRXq+rIfYPO7D9r0AAAAAAAAAAPNyiD0oVLY+wl1BvQFwEb89ESU+OkF6vQAAAAAAAAAAMzl3PT4JLT9y+Ko9qRE5vz13Pz5CtIo8AAAAAAAAAACNMfG9uF+BPpCp6D6dzp2+5wo/PgKdEz4AAAAAAAAAAOZp6T2aDlY+6xSpvmfttL4DJZS6owg1vgAAAAAAAAAA5hgpvVxvP7ob78U7YlC3MBB3nbuBa8wzAACAPwAAgD+A4+y9xFz5Psq3Ij4MYPq+bWMLvpOvvz0AAAAAAAAAAABDQb6TnPk+dsnUPZ4uEr/Vqm2+U4f0PQAAAAAAAAAAZlpGvEino7pcooQ4wG9YM5q4nLoampi3AACAPwAAgD+NFTM+WM+jPy2fGD/uAwi/DNKPPnijkD4AAAAAAAAAAJrlCb0UlKO6Kh5ZvANzDLO015c5fu0HMwAAgD8AAIA/gCYCPW6NkLykHI6+758MvkCnhz1GeMq9AACAPwAAgD8z5D89vDcGPtFnCr7wTt2+S4ZYPX0utrwAAAAAAAAAAJq/eDwpABG6sbIQPUoDYbjNo6w6M3hftwAAgD8AAIA/5kkrvnSKCT9v3A0+Ec07v+PC7b22/v49AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhq3ZygtCckCUhpRSlIwBbJRLxIwBdJRHQKeI9Lt/nW91fZQoaAZoCWgPQwgN+z2xTsdEQJSGlFKUaBVLeWgWR0CniRHYHxBmdX2UKGgGaAloD0MIZf88DRgec0CUhpRSlGgVS+RoFkdAp4kpwdbPhXV9lChoBmgJaA9DCBlXXBxV7XFAlIaUUpRoFUvCaBZHQKeJLog3cYZ1fZQoaAZoCWgPQwhxzLIngfZwQJSGlFKUaBVLzWgWR0CniYNtALRbdX2UKGgGaAloD0MIlUkNbQAQckCUhpRSlGgVS+1oFkdAp4mIVfu1GHV9lChoBmgJaA9DCBPx1vk3g3FAlIaUUpRoFUu2aBZHQKeJkrNGEwp1fZQoaAZoCWgPQwg7jh8qDapvQJSGlFKUaBVLp2gWR0Cnii05dWyUdX2UKGgGaAloD0MIGQPrOL75ckCUhpRSlGgVS8toFkdAp4ppqmCROnV9lChoBmgJaA9DCMHhBRFppXNAlIaUUpRoFUvZaBZHQKeKp56dDpl1fZQoaAZoCWgPQwh5dY4BWe9xQJSGlFKUaBVL0GgWR0CnisIz3yqddX2UKGgGaAloD0MILLtgcE0EcUCUhpRSlGgVS8loFkdAp4rBBzFMqXV9lChoBmgJaA9DCIQqNXtgWnFAlIaUUpRoFUuqaBZHQKeKyFdszl91fZQoaAZoCWgPQwjcuTDSyxR0QJSGlFKUaBVLw2gWR0CniuQgTyrgdX2UKGgGaAloD0MI+Wncmx8kckCUhpRSlGgVS8xoFkdAp4rkO/cnE3V9lChoBmgJaA9DCHOdRlqqSXBAlIaUUpRoFUu4aBZHQKeK9R0EHMV1fZQoaAZoCWgPQwivJ7ouvA5yQJSGlFKUaBVLy2gWR0CnixYBFNL2dX2UKGgGaAloD0MIcsKE0Sxzb0CUhpRSlGgVS59oFkdAp4s0PpY9xXV9lChoBmgJaA9DCFBUNqwpqnNAlIaUUpRoFUvdaBZHQKeLS9i+cpd1fZQoaAZoCWgPQwhLyAc9mx5zQJSGlFKUaBVLvGgWR0Cni8QZGax5dX2UKGgGaAloD0MIq65DNaURckCUhpRSlGgVS8RoFkdAp4vKmGdqcnV9lChoBmgJaA9DCLJHqBmS5HFAlIaUUpRoFUu/aBZHQKeL0T2WY4R1fZQoaAZoCWgPQwhlUdhF0QlyQJSGlFKUaBVLp2gWR0Cni+F+EytWdX2UKGgGaAloD0MIuw7VlGTtckCUhpRSlGgVS+1oFkdAp4vnJ/5Ly3V9lChoBmgJaA9DCD3xnC2gSnJAlIaUUpRoFUupaBZHQKeMIY2sJY11fZQoaAZoCWgPQwikUBa+voBxQJSGlFKUaBVLq2gWR0CnjDXkHUtqdX2UKGgGaAloD0MIt3pOep85cUCUhpRSlGgVS79oFkdAp4xYy44IbHV9lChoBmgJaA9DCPflzHbFXXRAlIaUUpRoFUvlaBZHQKeMePRRdhR1fZQoaAZoCWgPQwjJ6IAkbGRyQJSGlFKUaBVLxWgWR0CnjHhe5WildX2UKGgGaAloD0MIXXAGf/+gcECUhpRSlGgVS8ZoFkdAp4yZ9Vmz0HV9lChoBmgJaA9DCMX/HVGhDHNAlIaUUpRoFUvUaBZHQKeMuuYhMal1fZQoaAZoCWgPQwgkKH6MOWFuQJSGlFKUaBVLpmgWR0CnjNpgTh5xdX2UKGgGaAloD0MISWk2j0PecUCUhpRSlGgVS8BoFkdAp41rlNlAeXV9lChoBmgJaA9DCByVm6glH3BAlIaUUpRoFUu2aBZHQKeNjY5DJEJ1fZQoaAZoCWgPQwhOgGH5M0hyQJSGlFKUaBVLzWgWR0CnjZ/0Eov0dX2UKGgGaAloD0MI8BRypV7MckCUhpRSlGgVS9NoFkdAp42lH+ZPVXV9lChoBmgJaA9DCOzbSUT4l3NAlIaUUpRoFUvBaBZHQKeNyco6S1V1fZQoaAZoCWgPQwhGfZI77CdxQJSGlFKUaBVLxWgWR0CnjfFBppN9dX2UKGgGaAloD0MIRkCFIwgXcUCUhpRSlGgVS7hoFkdAp47sgjhUBHV9lChoBmgJaA9DCOyH2GAhMnJAlIaUUpRoFUvAaBZHQKeO+31jAi51fZQoaAZoCWgPQwgr+64IPjlwQJSGlFKUaBVLt2gWR0Cnjx94mkWRdX2UKGgGaAloD0MIpz6QvDMWcUCUhpRSlGgVS79oFkdAp48aUJOWSnV9lChoBmgJaA9DCCleZW2TenNAlIaUUpRoFUvUaBZHQKePIKZ2IO91fZQoaAZoCWgPQwikNQadUBdxQJSGlFKUaBVLymgWR0CnjyCYTj//dX2UKGgGaAloD0MIDAVsB+OvckCUhpRSlGgVS8hoFkdAp48sBIWgvnV9lChoBmgJaA9DCDEjvD2IlnJAlIaUUpRoFUvFaBZHQKePTeC04R51fZQoaAZoCWgPQwjcK/NW3VxyQJSGlFKUaBVL7WgWR0Cnj3pXyRSxdX2UKGgGaAloD0MI+3lTkUp6cECUhpRSlGgVS7xoFkdAp493FBIFvHV9lChoBmgJaA9DCF8NUBrqSHJAlIaUUpRoFUvZaBZHQKePl557gKp1fZQoaAZoCWgPQwhIF5tWCiByQJSGlFKUaBVLvWgWR0CnkALhzeXSdX2UKGgGaAloD0MImu51Ut8Ab0CUhpRSlGgVS7toFkdAp4/99ph4MXV9lChoBmgJaA9DCDIdOj3v+3BAlIaUUpRoFUugaBZHQKeQDvttygh1fZQoaAZoCWgPQwhy32qduHNwQJSGlFKUaBVLvGgWR0CnkBridat+dX2UKGgGaAloD0MIh272B0rLcECUhpRSlGgVS8FoFkdAp5AzZtelbnV9lChoBmgJaA9DCK/rF+yGynNAlIaUUpRoFUvLaBZHQKeQT3h4t6J1fZQoaAZoCWgPQwhnfF9cqmFzQJSGlFKUaBVLwmgWR0CnkLb5M10ldX2UKGgGaAloD0MIZ0Rpb/CVcUCUhpRSlGgVS8loFkdAp5C7UAksz3V9lChoBmgJaA9DCCpUNxc/QHJAlIaUUpRoFUvVaBZHQKeQ6pFTeft1fZQoaAZoCWgPQwgNHNDSlb1xQJSGlFKUaBVLv2gWR0CnkOl4cFQmdX2UKGgGaAloD0MIw0ZZv9kWcECUhpRSlGgVS7toFkdAp5D0FY+0PnV9lChoBmgJaA9DCFpFf2hm6XNAlIaUUpRoFU1JAmgWR0CnkSrRBu4xdX2UKGgGaAloD0MIeAskKP4Ac0CUhpRSlGgVS9FoFkdAp5E0qUeMh3V9lChoBmgJaA9DCOxnsRQJDHJAlIaUUpRoFUuoaBZHQKeRSWIGhVV1fZQoaAZoCWgPQwguWRXhJi1yQJSGlFKUaBVNGAFoFkdAp5F6GlANX3V9lChoBmgJaA9DCPoLPWI0sHBAlIaUUpRoFUuwaBZHQKeRjlXiiqR1fZQoaAZoCWgPQwhkkLsIE61yQJSGlFKUaBVL12gWR0CnkbcEFGG3dX2UKGgGaAloD0MI6Ih8l1ItcECUhpRSlGgVS7BoFkdAp5HGS8rZrnV9lChoBmgJaA9DCDqUoSrmsXNAlIaUUpRoFUveaBZHQKeSmD8Lrop1fZQoaAZoCWgPQwh8nGnCtjtxQJSGlFKUaBVLp2gWR0CnktLGR3eOdX2UKGgGaAloD0MI+py7Xe8tdECUhpRSlGgVS95oFkdAp5LpJ2+wknV9lChoBmgJaA9DCKW+LO0UtXNAlIaUUpRoFUvtaBZHQKeS8GyHEdh1fZQoaAZoCWgPQwie7jzxnP9uQJSGlFKUaBVLt2gWR0CnkzL+YMOPdX2UKGgGaAloD0MIc4I2OfxuckCUhpRSlGgVS8NoFkdAp5NJ9NN8E3V9lChoBmgJaA9DCLjlIylp8XBAlIaUUpRoFUutaBZHQKeTUr2g3991fZQoaAZoCWgPQwiSA3Y1+aFzQJSGlFKUaBVLwGgWR0Cnk3F7Uoa2dX2UKGgGaAloD0MIVWe1wF46cUCUhpRSlGgVS8VoFkdAp5OyIBRyfnV9lChoBmgJaA9DCM2v5gCBlnNAlIaUUpRoFUvBaBZHQKeT4NtIkJN1fZQoaAZoCWgPQwghPxu5rhl0QJSGlFKUaBVL3GgWR0Cnk+c/2TPjdX2UKGgGaAloD0MIZ195kB5vcUCUhpRSlGgVS8loFkdAp5P4LNOdoXV9lChoBmgJaA9DCAkX8gjuOnFAlIaUUpRoFUvaaBZHQKeT/fb9If91fZQoaAZoCWgPQwgOFeP8TSx0QJSGlFKUaBVL2WgWR0Cnk/g/1QIldX2UKGgGaAloD0MI3iHFAAnabkCUhpRSlGgVS71oFkdAp5QqDkELY3V9lChoBmgJaA9DCBaInpRJM3FAlIaUUpRoFUvGaBZHQKeUaQyRB/t1fZQoaAZoCWgPQwiwG7YtiplyQJSGlFKUaBVLzGgWR0CnlH8hkiD/dX2UKGgGaAloD0MItfrqqoDhckCUhpRSlGgVS8ZoFkdAp5SIoy9EkXV9lChoBmgJaA9DCMr5Yu9F9HFAlIaUUpRoFUu4aBZHQKeUth7Vrh11fZQoaAZoCWgPQwjDDI0nwohwQJSGlFKUaBVLpWgWR0CnlLsf7rLRdX2UKGgGaAloD0MIh6JAn0hqcUCUhpRSlGgVS9hoFkdAp5TP2TPjXHV9lChoBmgJaA9DCIDxDBo6gXFAlIaUUpRoFUu4aBZHQKeU30tAcDN1fZQoaAZoCWgPQwhlGk0uBslzQJSGlFKUaBVLxGgWR0CnlO9GZuyedX2UKGgGaAloD0MIKzOl9TcyckCUhpRSlGgVS7xoFkdAp5T0k4WDYnV9lChoBmgJaA9DCLde04NCb3NAlIaUUpRoFUvZaBZHQKeVAfJV81J1fZQoaAZoCWgPQwithO6SOP1xQJSGlFKUaBVLomgWR0CnlQDYI0IkdX2UKGgGaAloD0MIUU60q1BTc0CUhpRSlGgVS8loFkdAp5U3yCnP3XV9lChoBmgJaA9DCI0KnGwDpG9AlIaUUpRoFUu8aBZHQKeVOxPfsNV1fZQoaAZoCWgPQwjpuYWuxApvQJSGlFKUaBVLuGgWR0CnlYanzg/DdX2UKGgGaAloD0MIHxDoTJoHckCUhpRSlGgVS9loFkdAp5WriqABk3V9lChoBmgJaA9DCHzysFCr6XJAlIaUUpRoFUvOaBZHQKeVwr3j+711fZQoaAZoCWgPQwjsT+JzZzNwQJSGlFKUaBVLxGgWR0CnldgbIcR2dX2UKGgGaAloD0MI6QyMvOy9cUCUhpRSlGgVS6NoFkdAp5X3j2i+L3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c9c9dc4a1da9a9c630e9a9f74f99c4e51f05f2e35f8ba176db1af6ca6131161
|
3 |
+
size 147279
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 32,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,20 +69,20 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
"n_epochs": 8,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f28f010c310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28f010c3a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28f010c430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28f010c4c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f28f010c550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f28f010c5e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28f010c670>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f28f010c700>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28f010c790>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28f010c820>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28f010c8b0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f28f01064e0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 32,
|
45 |
+
"num_timesteps": 2031616,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1670891222828151020,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANrdEj5FaGo/ddphPpHcH7+XQJI+OqrLPQAAAAAAAAAAmpr7vKkKILxA+uU9Bdi/vfmj87yiQQW/AACAPwAAgD8z4w+99qwUunrpEjyGdQk54aZRu1pXCzgAAIA/AACAP6AxJz5Em0o+oe4Ev5Akqr69NMW9KmfVvgAAAAAAAAAA2v3AvfhBmz5bjSw+5YwGvxw4zr3qjtE9AAAAAAAAAAAz8xC8e16Tuk/0hrl+XoG0GZtxuv5lnDgAAIA/AACAPw1qKj5f8/c+n2oEvgnaCb9xOXA++tetvAAAAAAAAAAAmhccPHsaj7p1RPE3woEjtvyUxLqURwe3AACAPwAAgD+zklw+ZGSjPls/t777aOS+kqZcPgvvcr4AAAAAAAAAAIDEDz4IJMc+CqVRvj/eGr/2nRA+qqe2vQAAAAAAAAAAMxfxu8OTVrwaUJe73+C7PFKJbj0NIwg6AACAPwAAgD9mI4G975MeP3KgoLwmiRG/SdrgvXXSDT0AAAAAAAAAAGYyHD2cjjG8OiBpvrwcvb2VxXY9GZAOvQAAAAAAAIA/DQzbva2djz4u+48+RL3BvvJuBTy4Ix8+AAAAAAAAAADNXLG6CshIu9c2FLurS408lz6bPDUlc70AAIA/AACAP0Cu0D33og0/6oRvvdFEJb/T8Ag+dkjEOwAAAAAAAAAAJs7rvegoRD9OTwS+k/cnv8L1Wr4zMkq9AAAAAAAAAAAzenY9LzQCPYst/70nRXq+rIfYPO7D9r0AAAAAAAAAAPNyiD0oVLY+wl1BvQFwEb89ESU+OkF6vQAAAAAAAAAAMzl3PT4JLT9y+Ko9qRE5vz13Pz5CtIo8AAAAAAAAAACNMfG9uF+BPpCp6D6dzp2+5wo/PgKdEz4AAAAAAAAAAOZp6T2aDlY+6xSpvmfttL4DJZS6owg1vgAAAAAAAAAA5hgpvVxvP7ob78U7YlC3MBB3nbuBa8wzAACAPwAAgD+A4+y9xFz5Psq3Ij4MYPq+bWMLvpOvvz0AAAAAAAAAAABDQb6TnPk+dsnUPZ4uEr/Vqm2+U4f0PQAAAAAAAAAAZlpGvEino7pcooQ4wG9YM5q4nLoampi3AACAPwAAgD+NFTM+WM+jPy2fGD/uAwi/DNKPPnijkD4AAAAAAAAAAJrlCb0UlKO6Kh5ZvANzDLO015c5fu0HMwAAgD8AAIA/gCYCPW6NkLykHI6+758MvkCnhz1GeMq9AACAPwAAgD8z5D89vDcGPtFnCr7wTt2+S4ZYPX0utrwAAAAAAAAAAJq/eDwpABG6sbIQPUoDYbjNo6w6M3hftwAAgD8AAIA/5kkrvnSKCT9v3A0+Ec07v+PC7b22/v49AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIhq3ZygtCckCUhpRSlIwBbJRLxIwBdJRHQKeI9Lt/nW91fZQoaAZoCWgPQwgN+z2xTsdEQJSGlFKUaBVLeWgWR0CniRHYHxBmdX2UKGgGaAloD0MIZf88DRgec0CUhpRSlGgVS+RoFkdAp4kpwdbPhXV9lChoBmgJaA9DCBlXXBxV7XFAlIaUUpRoFUvCaBZHQKeJLog3cYZ1fZQoaAZoCWgPQwhxzLIngfZwQJSGlFKUaBVLzWgWR0CniYNtALRbdX2UKGgGaAloD0MIlUkNbQAQckCUhpRSlGgVS+1oFkdAp4mIVfu1GHV9lChoBmgJaA9DCBPx1vk3g3FAlIaUUpRoFUu2aBZHQKeJkrNGEwp1fZQoaAZoCWgPQwg7jh8qDapvQJSGlFKUaBVLp2gWR0Cnii05dWyUdX2UKGgGaAloD0MIGQPrOL75ckCUhpRSlGgVS8toFkdAp4ppqmCROnV9lChoBmgJaA9DCMHhBRFppXNAlIaUUpRoFUvZaBZHQKeKp56dDpl1fZQoaAZoCWgPQwh5dY4BWe9xQJSGlFKUaBVL0GgWR0CnisIz3yqddX2UKGgGaAloD0MILLtgcE0EcUCUhpRSlGgVS8loFkdAp4rBBzFMqXV9lChoBmgJaA9DCIQqNXtgWnFAlIaUUpRoFUuqaBZHQKeKyFdszl91fZQoaAZoCWgPQwjcuTDSyxR0QJSGlFKUaBVLw2gWR0CniuQgTyrgdX2UKGgGaAloD0MI+Wncmx8kckCUhpRSlGgVS8xoFkdAp4rkO/cnE3V9lChoBmgJaA9DCHOdRlqqSXBAlIaUUpRoFUu4aBZHQKeK9R0EHMV1fZQoaAZoCWgPQwivJ7ouvA5yQJSGlFKUaBVLy2gWR0CnixYBFNL2dX2UKGgGaAloD0MIcsKE0Sxzb0CUhpRSlGgVS59oFkdAp4s0PpY9xXV9lChoBmgJaA9DCFBUNqwpqnNAlIaUUpRoFUvdaBZHQKeLS9i+cpd1fZQoaAZoCWgPQwhLyAc9mx5zQJSGlFKUaBVLvGgWR0Cni8QZGax5dX2UKGgGaAloD0MIq65DNaURckCUhpRSlGgVS8RoFkdAp4vKmGdqcnV9lChoBmgJaA9DCLJHqBmS5HFAlIaUUpRoFUu/aBZHQKeL0T2WY4R1fZQoaAZoCWgPQwhlUdhF0QlyQJSGlFKUaBVLp2gWR0Cni+F+EytWdX2UKGgGaAloD0MIuw7VlGTtckCUhpRSlGgVS+1oFkdAp4vnJ/5Ly3V9lChoBmgJaA9DCD3xnC2gSnJAlIaUUpRoFUupaBZHQKeMIY2sJY11fZQoaAZoCWgPQwikUBa+voBxQJSGlFKUaBVLq2gWR0CnjDXkHUtqdX2UKGgGaAloD0MIt3pOep85cUCUhpRSlGgVS79oFkdAp4xYy44IbHV9lChoBmgJaA9DCPflzHbFXXRAlIaUUpRoFUvlaBZHQKeMePRRdhR1fZQoaAZoCWgPQwjJ6IAkbGRyQJSGlFKUaBVLxWgWR0CnjHhe5WildX2UKGgGaAloD0MIXXAGf/+gcECUhpRSlGgVS8ZoFkdAp4yZ9Vmz0HV9lChoBmgJaA9DCMX/HVGhDHNAlIaUUpRoFUvUaBZHQKeMuuYhMal1fZQoaAZoCWgPQwgkKH6MOWFuQJSGlFKUaBVLpmgWR0CnjNpgTh5xdX2UKGgGaAloD0MISWk2j0PecUCUhpRSlGgVS8BoFkdAp41rlNlAeXV9lChoBmgJaA9DCByVm6glH3BAlIaUUpRoFUu2aBZHQKeNjY5DJEJ1fZQoaAZoCWgPQwhOgGH5M0hyQJSGlFKUaBVLzWgWR0CnjZ/0Eov0dX2UKGgGaAloD0MI8BRypV7MckCUhpRSlGgVS9NoFkdAp42lH+ZPVXV9lChoBmgJaA9DCOzbSUT4l3NAlIaUUpRoFUvBaBZHQKeNyco6S1V1fZQoaAZoCWgPQwhGfZI77CdxQJSGlFKUaBVLxWgWR0CnjfFBppN9dX2UKGgGaAloD0MIRkCFIwgXcUCUhpRSlGgVS7hoFkdAp47sgjhUBHV9lChoBmgJaA9DCOyH2GAhMnJAlIaUUpRoFUvAaBZHQKeO+31jAi51fZQoaAZoCWgPQwgr+64IPjlwQJSGlFKUaBVLt2gWR0Cnjx94mkWRdX2UKGgGaAloD0MIpz6QvDMWcUCUhpRSlGgVS79oFkdAp48aUJOWSnV9lChoBmgJaA9DCCleZW2TenNAlIaUUpRoFUvUaBZHQKePIKZ2IO91fZQoaAZoCWgPQwikNQadUBdxQJSGlFKUaBVLymgWR0CnjyCYTj//dX2UKGgGaAloD0MIDAVsB+OvckCUhpRSlGgVS8hoFkdAp48sBIWgvnV9lChoBmgJaA9DCDEjvD2IlnJAlIaUUpRoFUvFaBZHQKePTeC04R51fZQoaAZoCWgPQwjcK/NW3VxyQJSGlFKUaBVL7WgWR0Cnj3pXyRSxdX2UKGgGaAloD0MI+3lTkUp6cECUhpRSlGgVS7xoFkdAp493FBIFvHV9lChoBmgJaA9DCF8NUBrqSHJAlIaUUpRoFUvZaBZHQKePl557gKp1fZQoaAZoCWgPQwhIF5tWCiByQJSGlFKUaBVLvWgWR0CnkALhzeXSdX2UKGgGaAloD0MImu51Ut8Ab0CUhpRSlGgVS7toFkdAp4/99ph4MXV9lChoBmgJaA9DCDIdOj3v+3BAlIaUUpRoFUugaBZHQKeQDvttygh1fZQoaAZoCWgPQwhy32qduHNwQJSGlFKUaBVLvGgWR0CnkBridat+dX2UKGgGaAloD0MIh272B0rLcECUhpRSlGgVS8FoFkdAp5AzZtelbnV9lChoBmgJaA9DCK/rF+yGynNAlIaUUpRoFUvLaBZHQKeQT3h4t6J1fZQoaAZoCWgPQwhnfF9cqmFzQJSGlFKUaBVLwmgWR0CnkLb5M10ldX2UKGgGaAloD0MIZ0Rpb/CVcUCUhpRSlGgVS8loFkdAp5C7UAksz3V9lChoBmgJaA9DCCpUNxc/QHJAlIaUUpRoFUvVaBZHQKeQ6pFTeft1fZQoaAZoCWgPQwgNHNDSlb1xQJSGlFKUaBVLv2gWR0CnkOl4cFQmdX2UKGgGaAloD0MIw0ZZv9kWcECUhpRSlGgVS7toFkdAp5D0FY+0PnV9lChoBmgJaA9DCFpFf2hm6XNAlIaUUpRoFU1JAmgWR0CnkSrRBu4xdX2UKGgGaAloD0MIeAskKP4Ac0CUhpRSlGgVS9FoFkdAp5E0qUeMh3V9lChoBmgJaA9DCOxnsRQJDHJAlIaUUpRoFUuoaBZHQKeRSWIGhVV1fZQoaAZoCWgPQwguWRXhJi1yQJSGlFKUaBVNGAFoFkdAp5F6GlANX3V9lChoBmgJaA9DCPoLPWI0sHBAlIaUUpRoFUuwaBZHQKeRjlXiiqR1fZQoaAZoCWgPQwhkkLsIE61yQJSGlFKUaBVL12gWR0CnkbcEFGG3dX2UKGgGaAloD0MI6Ih8l1ItcECUhpRSlGgVS7BoFkdAp5HGS8rZrnV9lChoBmgJaA9DCDqUoSrmsXNAlIaUUpRoFUveaBZHQKeSmD8Lrop1fZQoaAZoCWgPQwh8nGnCtjtxQJSGlFKUaBVLp2gWR0CnktLGR3eOdX2UKGgGaAloD0MI+py7Xe8tdECUhpRSlGgVS95oFkdAp5LpJ2+wknV9lChoBmgJaA9DCKW+LO0UtXNAlIaUUpRoFUvtaBZHQKeS8GyHEdh1fZQoaAZoCWgPQwie7jzxnP9uQJSGlFKUaBVLt2gWR0CnkzL+YMOPdX2UKGgGaAloD0MIc4I2OfxuckCUhpRSlGgVS8NoFkdAp5NJ9NN8E3V9lChoBmgJaA9DCLjlIylp8XBAlIaUUpRoFUutaBZHQKeTUr2g3991fZQoaAZoCWgPQwiSA3Y1+aFzQJSGlFKUaBVLwGgWR0Cnk3F7Uoa2dX2UKGgGaAloD0MIVWe1wF46cUCUhpRSlGgVS8VoFkdAp5OyIBRyfnV9lChoBmgJaA9DCM2v5gCBlnNAlIaUUpRoFUvBaBZHQKeT4NtIkJN1fZQoaAZoCWgPQwghPxu5rhl0QJSGlFKUaBVL3GgWR0Cnk+c/2TPjdX2UKGgGaAloD0MIZ195kB5vcUCUhpRSlGgVS8loFkdAp5P4LNOdoXV9lChoBmgJaA9DCAkX8gjuOnFAlIaUUpRoFUvaaBZHQKeT/fb9If91fZQoaAZoCWgPQwgOFeP8TSx0QJSGlFKUaBVL2WgWR0Cnk/g/1QIldX2UKGgGaAloD0MI3iHFAAnabkCUhpRSlGgVS71oFkdAp5QqDkELY3V9lChoBmgJaA9DCBaInpRJM3FAlIaUUpRoFUvGaBZHQKeUaQyRB/t1fZQoaAZoCWgPQwiwG7YtiplyQJSGlFKUaBVLzGgWR0CnlH8hkiD/dX2UKGgGaAloD0MItfrqqoDhckCUhpRSlGgVS8ZoFkdAp5SIoy9EkXV9lChoBmgJaA9DCMr5Yu9F9HFAlIaUUpRoFUu4aBZHQKeUth7Vrh11fZQoaAZoCWgPQwjDDI0nwohwQJSGlFKUaBVLpWgWR0CnlLsf7rLRdX2UKGgGaAloD0MIh6JAn0hqcUCUhpRSlGgVS9hoFkdAp5TP2TPjXHV9lChoBmgJaA9DCIDxDBo6gXFAlIaUUpRoFUu4aBZHQKeU30tAcDN1fZQoaAZoCWgPQwhlGk0uBslzQJSGlFKUaBVLxGgWR0CnlO9GZuyedX2UKGgGaAloD0MIKzOl9TcyckCUhpRSlGgVS7xoFkdAp5T0k4WDYnV9lChoBmgJaA9DCLde04NCb3NAlIaUUpRoFUvZaBZHQKeVAfJV81J1fZQoaAZoCWgPQwithO6SOP1xQJSGlFKUaBVLomgWR0CnlQDYI0IkdX2UKGgGaAloD0MIUU60q1BTc0CUhpRSlGgVS8loFkdAp5U3yCnP3XV9lChoBmgJaA9DCI0KnGwDpG9AlIaUUpRoFUu8aBZHQKeVOxPfsNV1fZQoaAZoCWgPQwjpuYWuxApvQJSGlFKUaBVLuGgWR0CnlYanzg/DdX2UKGgGaAloD0MIHxDoTJoHckCUhpRSlGgVS9loFkdAp5WriqABk3V9lChoBmgJaA9DCHzysFCr6XJAlIaUUpRoFUvOaBZHQKeVwr3j+711fZQoaAZoCWgPQwjsT+JzZzNwQJSGlFKUaBVLxGgWR0CnldgbIcR2dX2UKGgGaAloD0MI6QyMvOy9cUCUhpRSlGgVS6NoFkdAp5X3j2i+L3VlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 496,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 32,
|
86 |
"n_epochs": 8,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c5a05084f352c570f5f6645d3eb9d07cad1a92c54df45add04f8510a1914964a
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64b7027cfbf7626c292b0be86f14ff926c2a200e4b3713428aef867fa1ded80e
|
3 |
+
size 43073
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
|
2 |
Python: 3.8.16
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu116
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
|
|
2 |
Python: 3.8.16
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: False
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 288.2543422334765, "std_reward": 19.017532063575597, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T01:18:53.742256"}
|