abhishek47 commited on
Commit
0900311
·
1 Parent(s): 8fcb77a

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.20 +/- 0.09
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62a7a5f93201e4c63cd89d73cfbca01d664ea1c3bac60cc09cb94caadae4e295
3
+ size 106832
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cbdf8fb05e0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7cbdf8fa9940>"
10
+ },
11
+ "verbose": 2,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1695777643796888070,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7DuKP51bYD/w76c/Pb0MvjVW5T4Hnwc/WVrMv0HhkT5e4Q/AMgHSv/Gau7+8l1g/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz5mDPxw9FD9Pxc8//DVyPr5nvT80lRQ/dwZuv/6YeD6ksrS/PNiuv8E7mr9a2wU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADsO4o/nVtgP/Dvpz9d9Zo/OF3qvArAuj89vQy+NVblPgefBz9LSEg+Z6zNP2uJjT9ZWsy/QeGRPl7hD8AF28i/75a3vz9le78yAdK/8Zq7v7yXWD/CbUG//d13P9l3vL6UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 1.0799537 0.8763979 1.3120098 ]\n [-0.13744064 0.44792333 0.5297703 ]\n [-1.5965072 0.28492168 -2.2481303 ]\n [-1.6406615 -1.4656659 0.8460653 ]]",
34
+ "desired_goal": "[[ 1.0281314 0.57905746 1.6232089 ]\n [ 0.23653406 1.4797285 0.58040166]\n [-0.92978615 0.24277112 -1.4117017 ]\n [-1.365974 -1.2049485 0.5228783 ]]",
35
+ "observation": "[[ 1.0799537 0.8763979 1.3120098 1.2106129 -0.0286089 1.4589856 ]\n [-0.13744064 0.44792333 0.5297703 0.19558828 1.6068238 1.1057562 ]\n [-1.5965072 0.28492168 -2.2481303 -1.569184 -1.4342936 -0.98201364]\n [-1.6406615 -1.4656659 0.8460653 -0.755581 0.968231 -0.36810187]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoJ2kPUE8WL0UjZI+0jOLvW77Mz1vlHU+BDn1PU67KTzw+wE9bYDLPaCcyr2KHcE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.08037877 -0.05279184 0.2862326 ]\n [-0.06796993 0.04394095 0.23982404]\n [ 0.11973765 0.0103596 0.03173441]\n [ 0.09936605 -0.09893155 0.09429462]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv55rxiG34KyMAWyUSwGMAXSUR0Cla4XUx20RdX2UKGgGR7+3ArQPZqVRaAdLAmgIR0Cla8toJzDGdX2UKGgGR7/QZflZHNHIaAdLA2gIR0Cla09vS+g2dX2UKGgGR7/C21D0Dlo2aAdLA2gIR0Cla5J1A7gbdX2UKGgGR7/XC3gDRtxdaAdLBGgIR0ClaxWeQMhHdX2UKGgGR7+8lAu7HyVfaAdLAmgIR0Cla9REWqLkdX2UKGgGR7+k7KaG5+YuaAdLAWgIR0Cla9sN2C/XdX2UKGgGR7/P6NVBD5TIaAdLA2gIR0Cla17sniNsdX2UKGgGR7/NA1NxlxwRaAdLA2gIR0Cla6IYekpJdX2UKGgGR7/UVLSNOuaGaAdLA2gIR0ClayVXmvGIdX2UKGgGR7/CRywOe8PGaAdLAmgIR0Cla6pLEk0KdX2UKGgGR7/MOx0MgEEDaAdLA2gIR0Cla2vJJXhgdX2UKGgGR7/b8twrDqGDaAdLBGgIR0Cla+xT850bdX2UKGgGR7/MjdHlOoHcaAdLA2gIR0ClazI99tuUdX2UKGgGR7+5JWeYlY2baAdLAmgIR0Cla7Wj4593dX2UKGgGR7+/KDCgsbvPaAdLAmgIR0Cla3chLXcydX2UKGgGR7+4nmaH9FWoaAdLAmgIR0Cla38C5mROdX2UKGgGR7/IKHfuTibVaAdLA2gIR0Cla0FGPPszdX2UKGgGR7/VYk3S8an8aAdLBGgIR0Cla//w7T2GdX2UKGgGR7+T5wfhddE9aAdLAWgIR0ClbATGYKIBdX2UKGgGR7/EtcOby6MBaAdLAmgIR0Cla0rsKLKndX2UKGgGR7/VVFhG6PKdaAdLA2gIR0Cla4/3FkxzdX2UKGgGR7/fCW/rSmZWaAdLBmgIR0Cla9K6vq1PdX2UKGgGR7/O5UcXFcY7aAdLA2gIR0ClbBSfDk2hdX2UKGgGR7/LltCRfWtmaAdLA2gIR0Cla1pU5uIidX2UKGgGR7/CnJkoWpIdaAdLAmgIR0Cla9vBi1ArdX2UKGgGR7/SF2mpEQXiaAdLA2gIR0Cla51GkN4JdX2UKGgGR7+5Vp9JBgNPaAdLAmgIR0Cla2NJvo/zdX2UKGgGR7/Vt7KJVKf4aAdLA2gIR0ClbCR+BpYcdX2UKGgGR7+7I6r/82rGaAdLAmgIR0Cla6hyCFsYdX2UKGgGR7+6/rSmZVn3aAdLAmgIR0Cla29Sde6adX2UKGgGR7/YUrkKeCkHaAdLBGgIR0Cla/KvNeMRdX2UKGgGR7/Eu1WsA/9paAdLAmgIR0Cla7T6BRQ8dX2UKGgGR7/L6XSjQAuJaAdLA2gIR0ClbDdehPCVdX2UKGgGR7+VD0Dlo11oaAdLAWgIR0Cla/oIfKZEdX2UKGgGR7/Al8gIQe3haAdLAmgIR0Cla7/En9ehdX2UKGgGR7/RJoCdSVGDaAdLA2gIR0Cla4GmUGFBdX2UKGgGR7+54hUzbeuWaAdLAmgIR0ClbEM4cWCVdX2UKGgGR7/Pl+3H7xd6aAdLA2gIR0ClbAnGKhtcdX2UKGgGR7+Yu01IiC8OaAdLAWgIR0ClbA508vEkdX2UKGgGR7/OTjebd8AraAdLA2gIR0Cla9Av+OwQdX2UKGgGR7/Onqmj0tiAaAdLA2gIR0Cla5IrWiDedX2UKGgGR7/MNsnAqNIcaAdLA2gIR0ClbFD+717IdX2UKGgGR7+/2EkB0ZFYaAdLAmgIR0Cla9j8tPHldX2UKGgGR7+8Vj7Q9ic5aAdLAmgIR0ClbFwPy08edX2UKGgGR7/No4+8oQWfaAdLA2gIR0ClbB6mwaBJdX2UKGgGR7/Lwc5sCT2WaAdLA2gIR0Cla6HCGetkdX2UKGgGR7+yEsasIVuaaAdLAmgIR0ClbCaunuRcdX2UKGgGR7/Ap9ZzPrv9aAdLAmgIR0Cla6nWz4UOdX2UKGgGR7/RAnDziCJ5aAdLA2gIR0ClbGhtk4FSdX2UKGgGR7/YyUs4DLbIaAdLBGgIR0Cla+wX668QdX2UKGgGR7/JL9uP3i71aAdLA2gIR0ClbDUCzTnadX2UKGgGR7+4cm0E5hjOaAdLAmgIR0Cla/Z3kgfVdX2UKGgGR7/N6t1ZDArQaAdLA2gIR0Cla7hVENONdX2UKGgGR7/FtxdY4hllaAdLA2gIR0ClbHcpsoDxdX2UKGgGR7+78pCrtE5RaAdLAmgIR0ClbD3l0YCRdX2UKGgGR7/BfgJkXk5qaAdLAmgIR0Cla/9jPOY6dX2UKGgGR7/XAe7tiQT3aAdLA2gIR0Cla8WhIvrXdX2UKGgGR7/JLZi/fwZwaAdLA2gIR0ClbIRISUTtdX2UKGgGR7/RrZJ04iosaAdLA2gIR0ClbA45DJEIdX2UKGgGR7/LMAWBSUC8aAdLA2gIR0Cla9Q4KhL5dX2UKGgGR7/LFCLMs6JZaAdLA2gIR0ClbJMUh3aBdX2UKGgGR7/TcvugHu7ZaAdLBWgIR0ClbFWfseGPdX2UKGgGR7+4hEBsANobaAdLAmgIR0ClbF32mHgxdX2UKGgGR7/IdV/+bVjJaAdLA2gIR0ClbKKgh8pkdX2UKGgGR7/WXQtz0Yj0aAdLBWgIR0ClbCZ3C9AYdX2UKGgGR7/YL2HtWuHOaAdLBGgIR0Cla+iSq2jPdX2UKGgGR7+6qS5iExqPaAdLAmgIR0ClbKtjLB9DdX2UKGgGR7/KQgcLjPv8aAdLA2gIR0ClbG4KQaJidX2UKGgGR7+12mpEQXhwaAdLAmgIR0Cla/FNL128dX2UKGgGR7/Ak/r0J4SpaAdLAmgIR0ClbLRHXmNjdX2UKGgGR7+7ZsbedkJ8aAdLAmgIR0ClbHbs4T9LdX2UKGgGR7/XP2PDHfdiaAdLBGgIR0ClbDh9b5dodX2UKGgGR7/D/J/5LytnaAdLAmgIR0Cla/pudf9hdX2UKGgGR7+7YpUgjhUBaAdLAmgIR0ClbL+jdpIudX2UKGgGR7+4287IT4+KaAdLAmgIR0ClbEOFQEZBdX2UKGgGR7+jTWoWHk92aAdLAWgIR0ClbMP3BYV7dX2UKGgGR7/EjcmBvrGBaAdLA2gIR0ClbIZzPrv9dX2UKGgGR7/ZTisGPgejaAdLBGgIR0ClbA3fhuO0dX2UKGgGR7/BrXUYsNDuaAdLAmgIR0ClbI8dgfEGdX2UKGgGR7+Yhpxm03OwaAdLAWgIR0ClbBKIacZtdX2UKGgGR7/QAM2FWXC1aAdLA2gIR0ClbNQI+nqFdX2UKGgGR7/X2LYPGyX2aAdLBGgIR0ClbFgEU0vXdX2UKGgGR7/C1pj+aScLaAdLAmgIR0ClbJq/EfkndX2UKGgGR7/NcUM5OrQxaAdLA2gIR0ClbCGJ3xFzdX2UKGgGR7/JRDTjNpudaAdLA2gIR0ClbOAc1fmcdX2UKGgGR7/RHwgDA8B/aAdLA2gIR0ClbGPTXrdFdX2UKGgGR7/IRFI/Z/TcaAdLA2gIR0ClbKZ/b0vodX2UKGgGR7/Bqu8scyWSaAdLAmgIR0ClbCmqo60ZdX2UKGgGR7/QhUipvP1MaAdLA2gIR0ClbO7P6be/dX2UKGgGR7+fEwWWQfZFaAdLAWgIR0ClbPLD63y7dX2UKGgGR7/YBqbjLjgiaAdLBGgIR0ClbLlY+0PZdX2UKGgGR7/U7gbZOBUaaAdLBWgIR0ClbHrNW2gGdX2UKGgGR7/Ymce8wpOOaAdLBGgIR0ClbDzHbRF7dX2UKGgGR7/Tlb/wRXfZaAdLA2gIR0ClbQG8dxQ0dX2UKGgGR7+7DtPYWcjJaAdLAmgIR0ClbMQ/xDsudX2UKGgGR7/MnvUjLSuyaAdLA2gIR0ClbIn4wh4ddX2UKGgGR7/JG1hLGrCFaAdLA2gIR0ClbEvzFuNxdX2UKGgGR7+8qe9SMtK7aAdLAmgIR0ClbQq3d9DydX2UKGgGR7/MmzjWCmMwaAdLA2gIR0ClbNES26TXdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f28eaeb6f5dcd3143ac0d1dde7cfd379cd5f66e5bc01161f611b0668727ccc62
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71e0a39ebd782efecb3e222f20921644fdb1a82b78ca2fbd65b102ec341b5e43
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cbdf8fb05e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cbdf8fa9940>"}, "verbose": 2, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1695777643796888070, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA7DuKP51bYD/w76c/Pb0MvjVW5T4Hnwc/WVrMv0HhkT5e4Q/AMgHSv/Gau7+8l1g/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz5mDPxw9FD9Pxc8//DVyPr5nvT80lRQ/dwZuv/6YeD6ksrS/PNiuv8E7mr9a2wU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADsO4o/nVtgP/Dvpz9d9Zo/OF3qvArAuj89vQy+NVblPgefBz9LSEg+Z6zNP2uJjT9ZWsy/QeGRPl7hD8AF28i/75a3vz9le78yAdK/8Zq7v7yXWD/CbUG//d13P9l3vL6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.0799537 0.8763979 1.3120098 ]\n [-0.13744064 0.44792333 0.5297703 ]\n [-1.5965072 0.28492168 -2.2481303 ]\n [-1.6406615 -1.4656659 0.8460653 ]]", "desired_goal": "[[ 1.0281314 0.57905746 1.6232089 ]\n [ 0.23653406 1.4797285 0.58040166]\n [-0.92978615 0.24277112 -1.4117017 ]\n [-1.365974 -1.2049485 0.5228783 ]]", "observation": "[[ 1.0799537 0.8763979 1.3120098 1.2106129 -0.0286089 1.4589856 ]\n [-0.13744064 0.44792333 0.5297703 0.19558828 1.6068238 1.1057562 ]\n [-1.5965072 0.28492168 -2.2481303 -1.569184 -1.4342936 -0.98201364]\n [-1.6406615 -1.4656659 0.8460653 -0.755581 0.968231 -0.36810187]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoJ2kPUE8WL0UjZI+0jOLvW77Mz1vlHU+BDn1PU67KTzw+wE9bYDLPaCcyr2KHcE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08037877 -0.05279184 0.2862326 ]\n [-0.06796993 0.04394095 0.23982404]\n [ 0.11973765 0.0103596 0.03173441]\n [ 0.09936605 -0.09893155 0.09429462]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv55rxiG34KyMAWyUSwGMAXSUR0Cla4XUx20RdX2UKGgGR7+3ArQPZqVRaAdLAmgIR0Cla8toJzDGdX2UKGgGR7/QZflZHNHIaAdLA2gIR0Cla09vS+g2dX2UKGgGR7/C21D0Dlo2aAdLA2gIR0Cla5J1A7gbdX2UKGgGR7/XC3gDRtxdaAdLBGgIR0ClaxWeQMhHdX2UKGgGR7+8lAu7HyVfaAdLAmgIR0Cla9REWqLkdX2UKGgGR7+k7KaG5+YuaAdLAWgIR0Cla9sN2C/XdX2UKGgGR7/P6NVBD5TIaAdLA2gIR0Cla17sniNsdX2UKGgGR7/NA1NxlxwRaAdLA2gIR0Cla6IYekpJdX2UKGgGR7/UVLSNOuaGaAdLA2gIR0ClayVXmvGIdX2UKGgGR7/CRywOe8PGaAdLAmgIR0Cla6pLEk0KdX2UKGgGR7/MOx0MgEEDaAdLA2gIR0Cla2vJJXhgdX2UKGgGR7/b8twrDqGDaAdLBGgIR0Cla+xT850bdX2UKGgGR7/MjdHlOoHcaAdLA2gIR0ClazI99tuUdX2UKGgGR7+5JWeYlY2baAdLAmgIR0Cla7Wj4593dX2UKGgGR7+/KDCgsbvPaAdLAmgIR0Cla3chLXcydX2UKGgGR7+4nmaH9FWoaAdLAmgIR0Cla38C5mROdX2UKGgGR7/IKHfuTibVaAdLA2gIR0Cla0FGPPszdX2UKGgGR7/VYk3S8an8aAdLBGgIR0Cla//w7T2GdX2UKGgGR7+T5wfhddE9aAdLAWgIR0ClbATGYKIBdX2UKGgGR7/EtcOby6MBaAdLAmgIR0Cla0rsKLKndX2UKGgGR7/VVFhG6PKdaAdLA2gIR0Cla4/3FkxzdX2UKGgGR7/fCW/rSmZWaAdLBmgIR0Cla9K6vq1PdX2UKGgGR7/O5UcXFcY7aAdLA2gIR0ClbBSfDk2hdX2UKGgGR7/LltCRfWtmaAdLA2gIR0Cla1pU5uIidX2UKGgGR7/CnJkoWpIdaAdLAmgIR0Cla9vBi1ArdX2UKGgGR7/SF2mpEQXiaAdLA2gIR0Cla51GkN4JdX2UKGgGR7+5Vp9JBgNPaAdLAmgIR0Cla2NJvo/zdX2UKGgGR7/Vt7KJVKf4aAdLA2gIR0ClbCR+BpYcdX2UKGgGR7+7I6r/82rGaAdLAmgIR0Cla6hyCFsYdX2UKGgGR7+6/rSmZVn3aAdLAmgIR0Cla29Sde6adX2UKGgGR7/YUrkKeCkHaAdLBGgIR0Cla/KvNeMRdX2UKGgGR7/Eu1WsA/9paAdLAmgIR0Cla7T6BRQ8dX2UKGgGR7/L6XSjQAuJaAdLA2gIR0ClbDdehPCVdX2UKGgGR7+VD0Dlo11oaAdLAWgIR0Cla/oIfKZEdX2UKGgGR7/Al8gIQe3haAdLAmgIR0Cla7/En9ehdX2UKGgGR7/RJoCdSVGDaAdLA2gIR0Cla4GmUGFBdX2UKGgGR7+54hUzbeuWaAdLAmgIR0ClbEM4cWCVdX2UKGgGR7/Pl+3H7xd6aAdLA2gIR0ClbAnGKhtcdX2UKGgGR7+Yu01IiC8OaAdLAWgIR0ClbA508vEkdX2UKGgGR7/OTjebd8AraAdLA2gIR0Cla9Av+OwQdX2UKGgGR7/Onqmj0tiAaAdLA2gIR0Cla5IrWiDedX2UKGgGR7/MNsnAqNIcaAdLA2gIR0ClbFD+717IdX2UKGgGR7+/2EkB0ZFYaAdLAmgIR0Cla9j8tPHldX2UKGgGR7+8Vj7Q9ic5aAdLAmgIR0ClbFwPy08edX2UKGgGR7/No4+8oQWfaAdLA2gIR0ClbB6mwaBJdX2UKGgGR7/Lwc5sCT2WaAdLA2gIR0Cla6HCGetkdX2UKGgGR7+yEsasIVuaaAdLAmgIR0ClbCaunuRcdX2UKGgGR7/Ap9ZzPrv9aAdLAmgIR0Cla6nWz4UOdX2UKGgGR7/RAnDziCJ5aAdLA2gIR0ClbGhtk4FSdX2UKGgGR7/YyUs4DLbIaAdLBGgIR0Cla+wX668QdX2UKGgGR7/JL9uP3i71aAdLA2gIR0ClbDUCzTnadX2UKGgGR7+4cm0E5hjOaAdLAmgIR0Cla/Z3kgfVdX2UKGgGR7/N6t1ZDArQaAdLA2gIR0Cla7hVENONdX2UKGgGR7/FtxdY4hllaAdLA2gIR0ClbHcpsoDxdX2UKGgGR7+78pCrtE5RaAdLAmgIR0ClbD3l0YCRdX2UKGgGR7/BfgJkXk5qaAdLAmgIR0Cla/9jPOY6dX2UKGgGR7/XAe7tiQT3aAdLA2gIR0Cla8WhIvrXdX2UKGgGR7/JLZi/fwZwaAdLA2gIR0ClbIRISUTtdX2UKGgGR7/RrZJ04iosaAdLA2gIR0ClbA45DJEIdX2UKGgGR7/LMAWBSUC8aAdLA2gIR0Cla9Q4KhL5dX2UKGgGR7/LFCLMs6JZaAdLA2gIR0ClbJMUh3aBdX2UKGgGR7/TcvugHu7ZaAdLBWgIR0ClbFWfseGPdX2UKGgGR7+4hEBsANobaAdLAmgIR0ClbF32mHgxdX2UKGgGR7/IdV/+bVjJaAdLA2gIR0ClbKKgh8pkdX2UKGgGR7/WXQtz0Yj0aAdLBWgIR0ClbCZ3C9AYdX2UKGgGR7/YL2HtWuHOaAdLBGgIR0Cla+iSq2jPdX2UKGgGR7+6qS5iExqPaAdLAmgIR0ClbKtjLB9DdX2UKGgGR7/KQgcLjPv8aAdLA2gIR0ClbG4KQaJidX2UKGgGR7+12mpEQXhwaAdLAmgIR0Cla/FNL128dX2UKGgGR7/Ak/r0J4SpaAdLAmgIR0ClbLRHXmNjdX2UKGgGR7+7ZsbedkJ8aAdLAmgIR0ClbHbs4T9LdX2UKGgGR7/XP2PDHfdiaAdLBGgIR0ClbDh9b5dodX2UKGgGR7/D/J/5LytnaAdLAmgIR0Cla/pudf9hdX2UKGgGR7+7YpUgjhUBaAdLAmgIR0ClbL+jdpIudX2UKGgGR7+4287IT4+KaAdLAmgIR0ClbEOFQEZBdX2UKGgGR7+jTWoWHk92aAdLAWgIR0ClbMP3BYV7dX2UKGgGR7/EjcmBvrGBaAdLA2gIR0ClbIZzPrv9dX2UKGgGR7/ZTisGPgejaAdLBGgIR0ClbA3fhuO0dX2UKGgGR7/BrXUYsNDuaAdLAmgIR0ClbI8dgfEGdX2UKGgGR7+Yhpxm03OwaAdLAWgIR0ClbBKIacZtdX2UKGgGR7/QAM2FWXC1aAdLA2gIR0ClbNQI+nqFdX2UKGgGR7/X2LYPGyX2aAdLBGgIR0ClbFgEU0vXdX2UKGgGR7/C1pj+aScLaAdLAmgIR0ClbJq/EfkndX2UKGgGR7/NcUM5OrQxaAdLA2gIR0ClbCGJ3xFzdX2UKGgGR7/JRDTjNpudaAdLA2gIR0ClbOAc1fmcdX2UKGgGR7/RHwgDA8B/aAdLA2gIR0ClbGPTXrdFdX2UKGgGR7/IRFI/Z/TcaAdLA2gIR0ClbKZ/b0vodX2UKGgGR7/Bqu8scyWSaAdLAmgIR0ClbCmqo60ZdX2UKGgGR7/QhUipvP1MaAdLA2gIR0ClbO7P6be/dX2UKGgGR7+fEwWWQfZFaAdLAWgIR0ClbPLD63y7dX2UKGgGR7/YBqbjLjgiaAdLBGgIR0ClbLlY+0PZdX2UKGgGR7/U7gbZOBUaaAdLBWgIR0ClbHrNW2gGdX2UKGgGR7/Ymce8wpOOaAdLBGgIR0ClbDzHbRF7dX2UKGgGR7/Tlb/wRXfZaAdLA2gIR0ClbQG8dxQ0dX2UKGgGR7+7DtPYWcjJaAdLAmgIR0ClbMQ/xDsudX2UKGgGR7/MnvUjLSuyaAdLA2gIR0ClbIn4wh4ddX2UKGgGR7/JG1hLGrCFaAdLA2gIR0ClbEvzFuNxdX2UKGgGR7+8qe9SMtK7aAdLAmgIR0ClbQq3d9DydX2UKGgGR7/MmzjWCmMwaAdLA2gIR0ClbNES26TXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (691 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.197697626426816, "std_reward": 0.08623492014533672, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-27T02:11:19.937551"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c215953478b0b4544b600d45557d3cdcec17f84e9c747e6b46bf486a3e42c828
3
+ size 2623