File size: 11,191 Bytes
d9833e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
# SPDX-License-Identifier: Apache-2.0
import json
import re
from collections.abc import Sequence
from json import JSONDecoder
from typing import Union
import partial_json_parser
from partial_json_parser.core.options import Allow
from transformers import PreTrainedTokenizerBase
from vllm.entrypoints.openai.protocol import (
ChatCompletionRequest,
DeltaFunctionCall,
DeltaMessage,
DeltaToolCall,
ExtractedToolCallInformation,
FunctionCall,
ToolCall,
)
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
ToolParser,
ToolParserManager,
)
from vllm.entrypoints.openai.tool_parsers.utils import (
find_common_prefix,
is_complete_json,
partial_json_loads,
)
from vllm.logger import init_logger
from vllm.utils import random_uuid
logger = init_logger(__name__)
@ToolParserManager.register_module("gemma")
class GemmaJsonToolParser(ToolParser):
"""
Tool call parser for Gemma 3 models intended for use with the
appropriate Gemma chat template.
Used when --enable-auto-tool-choice --tool-call-parser gemma_json
are all set
"""
def __init__(self, tokenizer: PreTrainedTokenizerBase):
super().__init__(tokenizer)
# initialize properties used for state when parsing tool calls in
# streaming mode
self.prev_tool_call_arr: list[dict] = []
self.current_tool_id: int = -1
self.current_tool_name_sent: bool = False
self.streamed_args_for_tool: list[str] = []
# Gemma specific tokens
self.bos_token = "<bos>"
self.model_token = "<start_of_turn>model"
self.user_token = "<start_of_turn>user"
self.end_turn_token = "<end_of_turn>"
# For JSON detection
self.tool_call_regex = re.compile(r"\[{.*?}\]", re.DOTALL)
def extract_tool_calls(
self, model_output: str, request: ChatCompletionRequest
) -> ExtractedToolCallInformation:
"""
Extract the tool calls from a complete model response.
"""
# case -- if the response doesn't contain JSON, return a text response
if not model_output.startswith("{"):
return ExtractedToolCallInformation(
tools_called=False, tool_calls=[], content=model_output
)
try:
# load the JSON, and then use it to build the Function and
# Tool Call
dec = JSONDecoder()
function_call_arr = []
start_idx = 0
while start_idx < len(model_output):
try:
(obj, end_idx) = dec.raw_decode(model_output[start_idx:])
start_idx += end_idx
# Skip any separators like semicolons or commas
while start_idx < len(model_output) and model_output[start_idx] in [
";",
",",
" ",
]:
start_idx += 1
function_call_arr.append(obj)
except json.JSONDecodeError:
break
tool_calls: list[ToolCall] = [
ToolCall(
type="function",
function=FunctionCall(
name=raw_function_call["name"],
# function call args are JSON but as a string
arguments=json.dumps(
raw_function_call["arguments"]
if "arguments" in raw_function_call
else raw_function_call["parameters"]
),
),
)
for raw_function_call in function_call_arr
]
return ExtractedToolCallInformation(
tools_called=True, tool_calls=tool_calls, content=None
)
except Exception:
logger.exception("Error in extracting tool call from response.")
# return information to just treat the tool call as regular JSON
return ExtractedToolCallInformation(
tools_called=False, tool_calls=[], content=model_output
)
def extract_tool_calls_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
request: ChatCompletionRequest,
) -> Union[DeltaMessage, None]:
# Skip if not JSON format
if not current_text.startswith("{"):
return DeltaMessage(content=delta_text)
# bit mask flags for partial JSON parsing
flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR
try:
tool_call_arr = []
is_complete = []
try:
start_idx = 0
while start_idx < len(current_text):
(obj, end_idx) = partial_json_loads(current_text[start_idx:], flags)
is_complete.append(
is_complete_json(current_text[start_idx : start_idx + end_idx])
)
start_idx += end_idx
# Skip any separators like semicolons or commas
while start_idx < len(current_text) and current_text[start_idx] in [
";",
",",
" ",
]:
start_idx += 1
# Handle parameters field as arguments if needed
if "parameters" in obj:
assert (
"arguments" not in obj
), "model generated both parameters and arguments"
obj["arguments"] = obj["parameters"]
tool_call_arr.append(obj)
except partial_json_parser.core.exceptions.MalformedJSON:
logger.debug("not enough tokens to parse into JSON yet")
return None
# select as the current tool call the one we're on the state at
current_tool_call: dict = (
tool_call_arr[self.current_tool_id] if len(tool_call_arr) > 0 else {}
)
# case -- if no tokens have been streamed for the tool, e.g.
# only the array brackets, stream nothing
if len(tool_call_arr) == 0:
return None
# case: we are starting a new tool in the array
# -> array has > 0 length AND length has moved past cursor
elif (
len(tool_call_arr) > 0 and len(tool_call_arr) > self.current_tool_id + 1
):
if self.current_tool_id >= 0:
cur_arguments = current_tool_call.get("arguments")
if cur_arguments:
cur_args_json = json.dumps(cur_arguments)
sent = len(self.streamed_args_for_tool[self.current_tool_id])
argument_diff = cur_args_json[sent:]
logger.debug("got arguments diff: %s", argument_diff)
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=argument_diff
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[
self.current_tool_id
] += argument_diff
else:
delta = None
else:
delta = None
# re-set stuff pertaining to progress in the current tool
self.current_tool_id = len(tool_call_arr) - 1
self.current_tool_name_sent = False
self.streamed_args_for_tool.append("")
logger.debug("starting on new tool %d", self.current_tool_id)
return delta
# if the current tool name hasn't been sent, send if available
# - otherwise send nothing
elif not self.current_tool_name_sent:
function_name = current_tool_call.get("name")
if function_name:
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
type="function",
id=f"chatcmpl-tool-{random_uuid()}",
function=DeltaFunctionCall(
name=function_name
).model_dump(exclude_none=True),
)
]
)
self.current_tool_name_sent = True
else:
delta = None
else:
cur_arguments = current_tool_call.get("arguments")
delta = None
if cur_arguments:
sent = len(self.streamed_args_for_tool[self.current_tool_id])
cur_args_json = json.dumps(cur_arguments)
prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get(
"arguments"
)
argument_diff = None
if is_complete[self.current_tool_id]:
argument_diff = cur_args_json[sent:]
elif prev_arguments:
prev_args_json = json.dumps(prev_arguments)
if cur_args_json != prev_args_json:
prefix = find_common_prefix(prev_args_json, cur_args_json)
argument_diff = prefix[sent:]
if argument_diff is not None:
delta = DeltaMessage(
tool_calls=[
DeltaToolCall(
index=self.current_tool_id,
function=DeltaFunctionCall(
arguments=argument_diff
).model_dump(exclude_none=True),
)
]
)
self.streamed_args_for_tool[
self.current_tool_id
] += argument_diff
self.prev_tool_call_arr = tool_call_arr
return delta
except Exception:
logger.exception("Error trying to handle streaming tool call.")
logger.debug(
"Skipping chunk as a result of tool streaming extraction error"
)
return None
|