# SPDX-License-Identifier: Apache-2.0 import json import re from collections.abc import Sequence from json import JSONDecoder from typing import Union import partial_json_parser from partial_json_parser.core.options import Allow from transformers import PreTrainedTokenizerBase from vllm.entrypoints.openai.protocol import ( ChatCompletionRequest, DeltaFunctionCall, DeltaMessage, DeltaToolCall, ExtractedToolCallInformation, FunctionCall, ToolCall, ) from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import ( ToolParser, ToolParserManager, ) from vllm.entrypoints.openai.tool_parsers.utils import ( find_common_prefix, is_complete_json, partial_json_loads, ) from vllm.logger import init_logger from vllm.utils import random_uuid logger = init_logger(__name__) @ToolParserManager.register_module("gemma") class GemmaJsonToolParser(ToolParser): """ Tool call parser for Gemma 3 models intended for use with the appropriate Gemma chat template. Used when --enable-auto-tool-choice --tool-call-parser gemma_json are all set """ def __init__(self, tokenizer: PreTrainedTokenizerBase): super().__init__(tokenizer) # initialize properties used for state when parsing tool calls in # streaming mode self.prev_tool_call_arr: list[dict] = [] self.current_tool_id: int = -1 self.current_tool_name_sent: bool = False self.streamed_args_for_tool: list[str] = [] # Gemma specific tokens self.bos_token = "" self.model_token = "model" self.user_token = "user" self.end_turn_token = "" # For JSON detection self.tool_call_regex = re.compile(r"\[{.*?}\]", re.DOTALL) def extract_tool_calls( self, model_output: str, request: ChatCompletionRequest ) -> ExtractedToolCallInformation: """ Extract the tool calls from a complete model response. """ # case -- if the response doesn't contain JSON, return a text response if not model_output.startswith("{"): return ExtractedToolCallInformation( tools_called=False, tool_calls=[], content=model_output ) try: # load the JSON, and then use it to build the Function and # Tool Call dec = JSONDecoder() function_call_arr = [] start_idx = 0 while start_idx < len(model_output): try: (obj, end_idx) = dec.raw_decode(model_output[start_idx:]) start_idx += end_idx # Skip any separators like semicolons or commas while start_idx < len(model_output) and model_output[start_idx] in [ ";", ",", " ", ]: start_idx += 1 function_call_arr.append(obj) except json.JSONDecodeError: break tool_calls: list[ToolCall] = [ ToolCall( type="function", function=FunctionCall( name=raw_function_call["name"], # function call args are JSON but as a string arguments=json.dumps( raw_function_call["arguments"] if "arguments" in raw_function_call else raw_function_call["parameters"] ), ), ) for raw_function_call in function_call_arr ] return ExtractedToolCallInformation( tools_called=True, tool_calls=tool_calls, content=None ) except Exception: logger.exception("Error in extracting tool call from response.") # return information to just treat the tool call as regular JSON return ExtractedToolCallInformation( tools_called=False, tool_calls=[], content=model_output ) def extract_tool_calls_streaming( self, previous_text: str, current_text: str, delta_text: str, previous_token_ids: Sequence[int], current_token_ids: Sequence[int], delta_token_ids: Sequence[int], request: ChatCompletionRequest, ) -> Union[DeltaMessage, None]: # Skip if not JSON format if not current_text.startswith("{"): return DeltaMessage(content=delta_text) # bit mask flags for partial JSON parsing flags = Allow.ALL if self.current_tool_name_sent else Allow.ALL & ~Allow.STR try: tool_call_arr = [] is_complete = [] try: start_idx = 0 while start_idx < len(current_text): (obj, end_idx) = partial_json_loads(current_text[start_idx:], flags) is_complete.append( is_complete_json(current_text[start_idx : start_idx + end_idx]) ) start_idx += end_idx # Skip any separators like semicolons or commas while start_idx < len(current_text) and current_text[start_idx] in [ ";", ",", " ", ]: start_idx += 1 # Handle parameters field as arguments if needed if "parameters" in obj: assert ( "arguments" not in obj ), "model generated both parameters and arguments" obj["arguments"] = obj["parameters"] tool_call_arr.append(obj) except partial_json_parser.core.exceptions.MalformedJSON: logger.debug("not enough tokens to parse into JSON yet") return None # select as the current tool call the one we're on the state at current_tool_call: dict = ( tool_call_arr[self.current_tool_id] if len(tool_call_arr) > 0 else {} ) # case -- if no tokens have been streamed for the tool, e.g. # only the array brackets, stream nothing if len(tool_call_arr) == 0: return None # case: we are starting a new tool in the array # -> array has > 0 length AND length has moved past cursor elif ( len(tool_call_arr) > 0 and len(tool_call_arr) > self.current_tool_id + 1 ): if self.current_tool_id >= 0: cur_arguments = current_tool_call.get("arguments") if cur_arguments: cur_args_json = json.dumps(cur_arguments) sent = len(self.streamed_args_for_tool[self.current_tool_id]) argument_diff = cur_args_json[sent:] logger.debug("got arguments diff: %s", argument_diff) delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall( arguments=argument_diff ).model_dump(exclude_none=True), ) ] ) self.streamed_args_for_tool[ self.current_tool_id ] += argument_diff else: delta = None else: delta = None # re-set stuff pertaining to progress in the current tool self.current_tool_id = len(tool_call_arr) - 1 self.current_tool_name_sent = False self.streamed_args_for_tool.append("") logger.debug("starting on new tool %d", self.current_tool_id) return delta # if the current tool name hasn't been sent, send if available # - otherwise send nothing elif not self.current_tool_name_sent: function_name = current_tool_call.get("name") if function_name: delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, type="function", id=f"chatcmpl-tool-{random_uuid()}", function=DeltaFunctionCall( name=function_name ).model_dump(exclude_none=True), ) ] ) self.current_tool_name_sent = True else: delta = None else: cur_arguments = current_tool_call.get("arguments") delta = None if cur_arguments: sent = len(self.streamed_args_for_tool[self.current_tool_id]) cur_args_json = json.dumps(cur_arguments) prev_arguments = self.prev_tool_call_arr[self.current_tool_id].get( "arguments" ) argument_diff = None if is_complete[self.current_tool_id]: argument_diff = cur_args_json[sent:] elif prev_arguments: prev_args_json = json.dumps(prev_arguments) if cur_args_json != prev_args_json: prefix = find_common_prefix(prev_args_json, cur_args_json) argument_diff = prefix[sent:] if argument_diff is not None: delta = DeltaMessage( tool_calls=[ DeltaToolCall( index=self.current_tool_id, function=DeltaFunctionCall( arguments=argument_diff ).model_dump(exclude_none=True), ) ] ) self.streamed_args_for_tool[ self.current_tool_id ] += argument_diff self.prev_tool_call_arr = tool_call_arr return delta except Exception: logger.exception("Error trying to handle streaming tool call.") logger.debug( "Skipping chunk as a result of tool streaming extraction error" ) return None