abhisheksagar commited on
Commit
c213c63
·
verified ·
1 Parent(s): 743e85f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -142
README.md CHANGED
@@ -1,202 +1,136 @@
 
1
  ---
2
  base_model: meta-llama/Llama-2-7b-hf
3
  library_name: peft
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
112
 
113
- [More Information Needed]
114
 
115
- #### Factors
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
 
 
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
 
124
 
125
- [More Information Needed]
 
 
 
126
 
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
200
  ### Framework versions
201
 
202
- - PEFT 0.15.1
 
 
1
+
2
  ---
3
  base_model: meta-llama/Llama-2-7b-hf
4
  library_name: peft
5
  ---
6
 
7
+ # Model Card for Instruction Backtranslation (Backward Model)
 
 
8
 
9
+ ## Model Overview
10
 
11
+ This repository contains a fine-tuned version of the Llama-2-7b-hf model specifically trained for **Instruction Backtranslation**, implementing the method described in the paper "Self Alignment with Instruction Backtranslation." The model is trained as a backward model to predict original instructions given their corresponding outputs. This reverse training aims to improve model alignment and self-consistency.
12
 
13
  ## Model Details
14
 
15
  ### Model Description
16
 
17
+ The model utilizes the LLaMA-2 architecture fine-tuned using Low-Rank Adaptation (LoRA) techniques (PEFT library). The primary goal is to reconstruct instructions (`x`) from outputs (`y`), thus creating pairs `(y, x)` for backward prediction.
 
 
18
 
19
+ - **Developed by:** Abhishek Sagar Sanda
20
+ - **Model type:** LoRA-finetuned Causal LM
21
+ - **Language(s):** English
22
+ - **License:** Apache-2.0 (consistent with base LLaMA-2 model)
23
+ - **Finetuned from:** [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
 
 
24
 
25
+ ### Model Sources
26
 
27
+ - **Paper:** [Self Alignment with Instruction Backtranslation](https://arxiv.org/abs/2308.06259)
28
+ - **Base Model Repository:** [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
29
 
30
+ ## Intended Uses
 
 
 
 
 
 
31
 
32
  ### Direct Use
33
 
34
+ - Generating original instructions from outputs for alignment purposes.
35
+ - Research in model alignment, self-consistency, and instruction-following behavior.
 
36
 
37
+ ### Downstream Use
38
 
39
+ - Enhancing forward instruction-following models via self-alignment methods.
40
+ - Improving instruction tuning datasets by generating diverse instructions from desired outputs.
 
41
 
42
  ### Out-of-Scope Use
43
 
44
+ - This model is not suited for general question-answering or generic text generation tasks.
45
+ - Avoid using in contexts requiring high factual accuracy without additional verification.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
+ ## Training Data
48
 
49
+ The model was trained on the **OpenAssistant-Guanaco** training dataset, focusing on `(output, instruction)` pairs for backward prediction.
50
 
51
+ ## Training Procedure
52
 
53
+ ### Preprocessing
54
 
55
+ - Dataset pairs were inverted to use outputs (`y`) as input and instructions (`x`) as labels.
56
+ - Standard tokenization was applied using LLaMA's tokenizer.
57
 
58
+ ### Training Hyperparameters
59
 
60
+ - **LoRA Rank (r):** 8
61
+ - **LoRA Alpha:** 32
62
+ - **LoRA Dropout:** 0.05
63
+ - **Target Modules:** `k_proj`, `q_proj`, `v_proj`, `o_proj`
64
+ - **Training Precision:** bf16 mixed precision
65
 
66
  ## Evaluation
67
 
68
+ Evaluation involved assessing the accuracy of generated instructions against the original instructions. Key metrics include BLEU, ROUGE, and qualitative human evaluations.
69
 
70
+ ## Technical Specifications
71
 
72
+ ### Model Architecture
73
 
74
+ - LLaMA-2 Transformer Architecture with PEFT LoRA Adaptation
75
+ - **Tokenizer:** LLaMA Tokenizer (`tokenizer_class`: LlamaTokenizer)
76
+ - **Maximum Sequence Length:** Practically unlimited (`model_max_length` is set very large)
77
 
78
+ ### Hardware
79
 
80
+ - GPUs: NVIDIA A100 GPUs recommended
81
+ - Cloud Provider: AWS/GCP
82
 
83
+ ## How to Use
84
 
85
+ Here's a quick start guide:
86
 
87
+ ```python
88
+ from peft import PeftModel, PeftConfig
89
+ from transformers import AutoModelForCausalLM, AutoTokenizer
90
 
91
+ base_model_name = "meta-llama/Llama-2-7b-hf"
92
+ peft_model_name = "your_hf_model_path"
93
 
94
+ config = PeftConfig.from_pretrained(peft_model_name)
95
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
96
+ model = AutoModelForCausalLM.from_pretrained(base_model_name)
97
+ model = PeftModel.from_pretrained(model, peft_model_name)
98
 
99
+ inputs = tokenizer("Output text goes here", return_tensors="pt")
100
+ outputs = model.generate(**inputs)
101
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
102
+ ```
 
 
 
 
 
 
 
 
 
103
 
104
  ## Environmental Impact
105
 
106
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
 
108
+ - **Hardware Type:** NVIDIA GeForce RTX 4070 GPU
109
+ - **Hours Used:** 3hrs
110
 
 
111
 
112
+ ## Citation
113
 
114
+ If you use this model, please cite:
115
 
116
+ ```bibtex
117
+ @article{xu2023selfalignment,
118
+ title={Self Alignment with Instruction Backtranslation},
119
+ author={Xu, et al.},
120
+ journal={arXiv preprint arXiv:2308.06259},
121
+ year={2023}
122
+ }
123
+ ```
124
 
125
+ ## Model Card Author
126
 
127
+ - Abhishek Sagar Sanda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
  ## Model Card Contact
130
 
131
132
+
133
  ### Framework versions
134
 
135
+ - PEFT 0.15.1
136
+ - Transformers 4.38.1