abideen commited on
Commit
bb82fd8
·
verified ·
1 Parent(s): 138a6fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -2
README.md CHANGED
@@ -78,7 +78,7 @@ import transformers
78
  import torch
79
 
80
  model = "abideen/NexoNimbus-7B"
81
- messages = [{"role": "user", "content": "What is a large language model?"}]
82
 
83
  tokenizer = AutoTokenizer.from_pretrained(model)
84
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
@@ -91,4 +91,9 @@ pipeline = transformers.pipeline(
91
 
92
  outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
93
  print(outputs[0]["generated_text"])
94
- ```
 
 
 
 
 
 
78
  import torch
79
 
80
  model = "abideen/NexoNimbus-7B"
81
+ messages = [{"role": "user", "content": "Explain what is Machine learning."}]
82
 
83
  tokenizer = AutoTokenizer.from_pretrained(model)
84
  prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
 
91
 
92
  outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
93
  print(outputs[0]["generated_text"])
94
+ ```
95
+
96
+ "Machine learning is a subfield of artificial intelligence that focuses on developing algorithms and models that allow computers to learn and improve their performance over time, without being explicitly programmed. It involves the use of statistical techniques and data analysis to identify patterns and make predictions based on input data.
97
+ In machine learning, data is fed into a model, which then adjusts its internal parameters to minimize the difference between the predicted output and the actual output. This process is called training, and as the model is exposed to more data, it becomes better at making predictions or classifications.
98
+ Machine learning can be divided into several categories, including supervised learning, unsupervised learning, and reinforcement learning. Supervised learning involves using labeled data, where the desired output is known, and the model learns to map inputs to outputs. Unsupervised learning, on the other hand, does not have a predefined output, and the model learns to identify patterns or relationships within the data. Reinforcement learning involves learning through trial and error, with the model receiving feedback in the form of rewards or penalties based on its actions.
99
+ Some common applications of machine learning include image recognition, natural language processing, recommendation systems, fraud detection, and self-driving."