--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - abideen/DareVox-7B - udkai/Garrulus language: - en --- # NexoNimbus-7B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/9lIzCPqDYR6nnLgoH6kMp.png) NexoNimbus-7B is a merge of the following models: * [abideen/DareVox-7B](https://huggingface.co/abideen/DareVox-7B) * [udkai/Garrulus](https://huggingface.co/udkai/Garrulus) 🏆 Evaluation NexoNimbus-7B is the 5th best-performing 7B LLM on the Open LLM Leaderboard: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/MIkOaXVGJ0T5UVYIEhtYA.png) | Task |Version| Metric |Value| |Stderr| |-------------|------:|--------|----:|---|-----:| |arc_challenge| 0|acc |68.25|± | 1.36| | | |acc_norm|70.81|± | 1.38| |hellaswag | 0|acc |70.86|± | 0.45| | | |acc_norm|87.86|± | 0.32| |gsm8k | 0|acc |70.35|± | 1.25| |winogrande | 0|acc |84.84|± | 1.00| |mmlu | 0|acc |64.69|± | 1.00| Average: 73.5% ### TruthfulQA | Task |Version|Metric|Value| |Stderr| |-------------|------:|------|----:|---|-----:| |truthfulqa_mc| 1|mc1 |46.26|± | 1.74| | | |mc2 |62.42|± | 1.54| ## 🧩 Configuration ```yaml slices: - sources: - model: abideen/DareVox-7B layer_range: [0, 32] - model: udkai/Garrulus layer_range: [0, 32] merge_method: slerp base_model: abideen/DareVox-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "abideen/NexoNimbus-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```