abideen commited on
Commit
9a63e25
·
verified ·
1 Parent(s): b67bfc1

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:10K<n<100K
9
+ - loss:BatchAllTripletLoss
10
+ base_model: BAAI/bge-base-en-v1.5
11
+ widget:
12
+ - source_sentence: How do bees make honey?
13
+ sentences:
14
+ - How do plants make their food?
15
+ - How do the themes of transience and human triumph over it manifest in the story?
16
+ - Discuss the significance of the mentorship program in Sarah's professional growth
17
+ within the company.
18
+ - source_sentence: Why do seasons change?
19
+ sentences:
20
+ - Why is biodiversity important?
21
+ - What role does inclusivity play in ensuring the success of activism initiatives?
22
+ - Discuss the differences in magnetic behavior between non-magnetic and magnetic
23
+ materials.
24
+ - source_sentence: What causes tsunamis?
25
+ sentences:
26
+ - What causes hurricanes?
27
+ - Why is Pi considered an irrational number and how is it used in various fields?
28
+ - What role can an attorney play in advocating for a victim of sexual assault?
29
+ - source_sentence: What is the Simple View?
30
+ sentences:
31
+ - What is point estimation?
32
+ - How did Bill's attitude towards healthier lifestyle choices change over time?
33
+ - How can the nutritionist plan a three-course meal with specific vegetable constraints?
34
+ - source_sentence: Why do we have time zones?
35
+ sentences:
36
+ - What is the Settling Condition of intending?
37
+ - What are the limitations when using Canva graphics in items that will be sold?
38
+ - What specific tests are typically recommended for diagnosing stomach issues like
39
+ the ones described?
40
+ pipeline_tag: sentence-similarity
41
+ ---
42
+
43
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Output Dimensionality:** 768 tokens
54
+ - **Similarity Function:** Cosine Similarity
55
+ <!-- - **Training Dataset:** Unknown -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ (2): Normalize()
72
+ )
73
+ ```
74
+
75
+ ## Usage
76
+
77
+ ### Direct Usage (Sentence Transformers)
78
+
79
+ First install the Sentence Transformers library:
80
+
81
+ ```bash
82
+ pip install -U sentence-transformers
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+ ```python
87
+ from sentence_transformers import SentenceTransformer
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SentenceTransformer("sentence_transformers_model_id")
91
+ # Run inference
92
+ sentences = [
93
+ 'Why do we have time zones?',
94
+ 'What is the Settling Condition of intending?',
95
+ 'What are the limitations when using Canva graphics in items that will be sold?',
96
+ ]
97
+ embeddings = model.encode(sentences)
98
+ print(embeddings.shape)
99
+ # [3, 768]
100
+
101
+ # Get the similarity scores for the embeddings
102
+ similarities = model.similarity(embeddings, embeddings)
103
+ print(similarities.shape)
104
+ # [3, 3]
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Hyperparameters
146
+ #### Non-Default Hyperparameters
147
+
148
+ - `per_device_train_batch_size`: 16
149
+ - `per_device_eval_batch_size`: 16
150
+ - `num_train_epochs`: 2
151
+ - `warmup_ratio`: 0.1
152
+ - `fp16`: True
153
+
154
+ #### All Hyperparameters
155
+ <details><summary>Click to expand</summary>
156
+
157
+ - `overwrite_output_dir`: False
158
+ - `do_predict`: False
159
+ - `eval_strategy`: no
160
+ - `prediction_loss_only`: True
161
+ - `per_device_train_batch_size`: 16
162
+ - `per_device_eval_batch_size`: 16
163
+ - `per_gpu_train_batch_size`: None
164
+ - `per_gpu_eval_batch_size`: None
165
+ - `gradient_accumulation_steps`: 1
166
+ - `eval_accumulation_steps`: None
167
+ - `learning_rate`: 5e-05
168
+ - `weight_decay`: 0.0
169
+ - `adam_beta1`: 0.9
170
+ - `adam_beta2`: 0.999
171
+ - `adam_epsilon`: 1e-08
172
+ - `max_grad_norm`: 1.0
173
+ - `num_train_epochs`: 2
174
+ - `max_steps`: -1
175
+ - `lr_scheduler_type`: linear
176
+ - `lr_scheduler_kwargs`: {}
177
+ - `warmup_ratio`: 0.1
178
+ - `warmup_steps`: 0
179
+ - `log_level`: passive
180
+ - `log_level_replica`: warning
181
+ - `log_on_each_node`: True
182
+ - `logging_nan_inf_filter`: True
183
+ - `save_safetensors`: True
184
+ - `save_on_each_node`: False
185
+ - `save_only_model`: False
186
+ - `restore_callback_states_from_checkpoint`: False
187
+ - `no_cuda`: False
188
+ - `use_cpu`: False
189
+ - `use_mps_device`: False
190
+ - `seed`: 42
191
+ - `data_seed`: None
192
+ - `jit_mode_eval`: False
193
+ - `use_ipex`: False
194
+ - `bf16`: False
195
+ - `fp16`: True
196
+ - `fp16_opt_level`: O1
197
+ - `half_precision_backend`: auto
198
+ - `bf16_full_eval`: False
199
+ - `fp16_full_eval`: False
200
+ - `tf32`: None
201
+ - `local_rank`: 0
202
+ - `ddp_backend`: None
203
+ - `tpu_num_cores`: None
204
+ - `tpu_metrics_debug`: False
205
+ - `debug`: []
206
+ - `dataloader_drop_last`: False
207
+ - `dataloader_num_workers`: 0
208
+ - `dataloader_prefetch_factor`: None
209
+ - `past_index`: -1
210
+ - `disable_tqdm`: False
211
+ - `remove_unused_columns`: True
212
+ - `label_names`: None
213
+ - `load_best_model_at_end`: False
214
+ - `ignore_data_skip`: False
215
+ - `fsdp`: []
216
+ - `fsdp_min_num_params`: 0
217
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
218
+ - `fsdp_transformer_layer_cls_to_wrap`: None
219
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
220
+ - `deepspeed`: None
221
+ - `label_smoothing_factor`: 0.0
222
+ - `optim`: adamw_torch
223
+ - `optim_args`: None
224
+ - `adafactor`: False
225
+ - `group_by_length`: False
226
+ - `length_column_name`: length
227
+ - `ddp_find_unused_parameters`: None
228
+ - `ddp_bucket_cap_mb`: None
229
+ - `ddp_broadcast_buffers`: False
230
+ - `dataloader_pin_memory`: True
231
+ - `dataloader_persistent_workers`: False
232
+ - `skip_memory_metrics`: True
233
+ - `use_legacy_prediction_loop`: False
234
+ - `push_to_hub`: False
235
+ - `resume_from_checkpoint`: None
236
+ - `hub_model_id`: None
237
+ - `hub_strategy`: every_save
238
+ - `hub_private_repo`: False
239
+ - `hub_always_push`: False
240
+ - `gradient_checkpointing`: False
241
+ - `gradient_checkpointing_kwargs`: None
242
+ - `include_inputs_for_metrics`: False
243
+ - `eval_do_concat_batches`: True
244
+ - `fp16_backend`: auto
245
+ - `push_to_hub_model_id`: None
246
+ - `push_to_hub_organization`: None
247
+ - `mp_parameters`:
248
+ - `auto_find_batch_size`: False
249
+ - `full_determinism`: False
250
+ - `torchdynamo`: None
251
+ - `ray_scope`: last
252
+ - `ddp_timeout`: 1800
253
+ - `torch_compile`: False
254
+ - `torch_compile_backend`: None
255
+ - `torch_compile_mode`: None
256
+ - `dispatch_batches`: None
257
+ - `split_batches`: None
258
+ - `include_tokens_per_second`: False
259
+ - `include_num_input_tokens_seen`: False
260
+ - `neftune_noise_alpha`: None
261
+ - `optim_target_modules`: None
262
+ - `batch_eval_metrics`: False
263
+ - `batch_sampler`: batch_sampler
264
+ - `multi_dataset_batch_sampler`: proportional
265
+
266
+ </details>
267
+
268
+ ### Training Logs
269
+ | Epoch | Step | Training Loss |
270
+ |:------:|:----:|:-------------:|
271
+ | 0.1121 | 100 | 4.9671 |
272
+ | 0.2242 | 200 | 4.7197 |
273
+ | 0.3363 | 300 | 4.5727 |
274
+ | 0.4484 | 400 | 4.5585 |
275
+ | 0.5605 | 500 | 4.5399 |
276
+ | 0.6726 | 600 | 4.4905 |
277
+ | 0.7848 | 700 | 4.4371 |
278
+ | 0.8969 | 800 | 4.4867 |
279
+ | 1.0090 | 900 | 4.4675 |
280
+ | 1.1211 | 1000 | 4.432 |
281
+ | 1.2332 | 1100 | 4.4185 |
282
+ | 1.3453 | 1200 | 4.428 |
283
+ | 1.4574 | 1300 | 4.4133 |
284
+ | 1.5695 | 1400 | 4.3019 |
285
+ | 1.6816 | 1500 | 4.4209 |
286
+ | 1.7937 | 1600 | 4.3696 |
287
+ | 1.9058 | 1700 | 4.3962 |
288
+
289
+
290
+ ### Framework Versions
291
+ - Python: 3.10.12
292
+ - Sentence Transformers: 3.0.0
293
+ - Transformers: 4.41.2
294
+ - PyTorch: 2.2.0+cu121
295
+ - Accelerate: 0.30.1
296
+ - Datasets: 2.19.1
297
+ - Tokenizers: 0.19.1
298
+
299
+ ## Citation
300
+
301
+ ### BibTeX
302
+
303
+ #### Sentence Transformers
304
+ ```bibtex
305
+ @inproceedings{reimers-2019-sentence-bert,
306
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
307
+ author = "Reimers, Nils and Gurevych, Iryna",
308
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
309
+ month = "11",
310
+ year = "2019",
311
+ publisher = "Association for Computational Linguistics",
312
+ url = "https://arxiv.org/abs/1908.10084",
313
+ }
314
+ ```
315
+
316
+ #### BatchAllTripletLoss
317
+ ```bibtex
318
+ @misc{hermans2017defense,
319
+ title={In Defense of the Triplet Loss for Person Re-Identification},
320
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
321
+ year={2017},
322
+ eprint={1703.07737},
323
+ archivePrefix={arXiv},
324
+ primaryClass={cs.CV}
325
+ }
326
+ ```
327
+
328
+ <!--
329
+ ## Glossary
330
+
331
+ *Clearly define terms in order to be accessible across audiences.*
332
+ -->
333
+
334
+ <!--
335
+ ## Model Card Authors
336
+
337
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
338
+ -->
339
+
340
+ <!--
341
+ ## Model Card Contact
342
+
343
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
344
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7e40e1a9411925f600a7babf9cd0655e1d82aece1e53750d1450dea3c357d52
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0803a4440673f19ac404beeadfb3bf161ee6c8c719f0654d70125797a7a73d1f
3
+ size 871297978
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0caddd7393cb25ecb74b6eddab51cd6bad74396b6123851552af680776183bf
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:941ff1bd687bd1b755c1376bde9110bd11bcd453b411361a0db3ad80d6df86e1
3
+ size 1064
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
trainer_state.json ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.905829596412556,
5
+ "eval_steps": 500,
6
+ "global_step": 1700,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.11210762331838565,
13
+ "grad_norm": 2.0963618755340576,
14
+ "learning_rate": 2.793296089385475e-05,
15
+ "loss": 4.9671,
16
+ "step": 100
17
+ },
18
+ {
19
+ "epoch": 0.2242152466367713,
20
+ "grad_norm": 0.3255109190940857,
21
+ "learning_rate": 4.9408099688473526e-05,
22
+ "loss": 4.7197,
23
+ "step": 200
24
+ },
25
+ {
26
+ "epoch": 0.336322869955157,
27
+ "grad_norm": 1.1150901317596436,
28
+ "learning_rate": 4.632398753894081e-05,
29
+ "loss": 4.5727,
30
+ "step": 300
31
+ },
32
+ {
33
+ "epoch": 0.4484304932735426,
34
+ "grad_norm": 4.738381862640381,
35
+ "learning_rate": 4.320872274143302e-05,
36
+ "loss": 4.5585,
37
+ "step": 400
38
+ },
39
+ {
40
+ "epoch": 0.5605381165919282,
41
+ "grad_norm": 0.3568013906478882,
42
+ "learning_rate": 4.0093457943925236e-05,
43
+ "loss": 4.5399,
44
+ "step": 500
45
+ },
46
+ {
47
+ "epoch": 0.672645739910314,
48
+ "grad_norm": 0.558647871017456,
49
+ "learning_rate": 3.700934579439253e-05,
50
+ "loss": 4.4905,
51
+ "step": 600
52
+ },
53
+ {
54
+ "epoch": 0.7847533632286996,
55
+ "grad_norm": 19.64227867126465,
56
+ "learning_rate": 3.3894080996884734e-05,
57
+ "loss": 4.4371,
58
+ "step": 700
59
+ },
60
+ {
61
+ "epoch": 0.8968609865470852,
62
+ "grad_norm": 2.4077465534210205,
63
+ "learning_rate": 3.077881619937695e-05,
64
+ "loss": 4.4867,
65
+ "step": 800
66
+ },
67
+ {
68
+ "epoch": 1.0089686098654709,
69
+ "grad_norm": 1.3140878677368164,
70
+ "learning_rate": 2.7663551401869157e-05,
71
+ "loss": 4.4675,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 1.1210762331838564,
76
+ "grad_norm": 1.7104419469833374,
77
+ "learning_rate": 2.4579439252336452e-05,
78
+ "loss": 4.432,
79
+ "step": 1000
80
+ },
81
+ {
82
+ "epoch": 1.2331838565022422,
83
+ "grad_norm": 7.763595104217529,
84
+ "learning_rate": 2.1464174454828662e-05,
85
+ "loss": 4.4185,
86
+ "step": 1100
87
+ },
88
+ {
89
+ "epoch": 1.3452914798206277,
90
+ "grad_norm": 0.4148617088794708,
91
+ "learning_rate": 1.8348909657320872e-05,
92
+ "loss": 4.428,
93
+ "step": 1200
94
+ },
95
+ {
96
+ "epoch": 1.4573991031390134,
97
+ "grad_norm": 2.4640185832977295,
98
+ "learning_rate": 1.5233644859813085e-05,
99
+ "loss": 4.4133,
100
+ "step": 1300
101
+ },
102
+ {
103
+ "epoch": 1.5695067264573992,
104
+ "grad_norm": 0.4486638903617859,
105
+ "learning_rate": 1.2118380062305297e-05,
106
+ "loss": 4.3019,
107
+ "step": 1400
108
+ },
109
+ {
110
+ "epoch": 1.6816143497757847,
111
+ "grad_norm": 191.92808532714844,
112
+ "learning_rate": 9.003115264797508e-06,
113
+ "loss": 4.4209,
114
+ "step": 1500
115
+ },
116
+ {
117
+ "epoch": 1.7937219730941703,
118
+ "grad_norm": 2.8736190795898438,
119
+ "learning_rate": 5.88785046728972e-06,
120
+ "loss": 4.3696,
121
+ "step": 1600
122
+ },
123
+ {
124
+ "epoch": 1.905829596412556,
125
+ "grad_norm": 0.13583791255950928,
126
+ "learning_rate": 2.7725856697819316e-06,
127
+ "loss": 4.3962,
128
+ "step": 1700
129
+ }
130
+ ],
131
+ "logging_steps": 100,
132
+ "max_steps": 1784,
133
+ "num_input_tokens_seen": 0,
134
+ "num_train_epochs": 2,
135
+ "save_steps": 100,
136
+ "stateful_callbacks": {
137
+ "TrainerControl": {
138
+ "args": {
139
+ "should_epoch_stop": false,
140
+ "should_evaluate": false,
141
+ "should_log": false,
142
+ "should_save": true,
143
+ "should_training_stop": false
144
+ },
145
+ "attributes": {}
146
+ }
147
+ },
148
+ "total_flos": 0.0,
149
+ "train_batch_size": 16,
150
+ "trial_name": null,
151
+ "trial_params": null
152
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc577c89383bafeaaa07fc49f77ea09e37f10794f08732bfe7f5ce9aa95d9375
3
+ size 5368
vocab.txt ADDED
The diff for this file is too large to render. See raw diff