Delete data_config.json
Browse files- data_config.json +0 -344
data_config.json
DELETED
@@ -1,344 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Train script for a single file
|
3 |
-
|
4 |
-
Need to set the TPU address first:
|
5 |
-
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
|
6 |
-
"""
|
7 |
-
|
8 |
-
import torch.multiprocessing as mp
|
9 |
-
import threading
|
10 |
-
import time
|
11 |
-
import random
|
12 |
-
import sys
|
13 |
-
import argparse
|
14 |
-
import gzip
|
15 |
-
import json
|
16 |
-
import logging
|
17 |
-
import tqdm
|
18 |
-
import torch
|
19 |
-
from torch import nn
|
20 |
-
from torch.utils.data import DataLoader
|
21 |
-
import torch
|
22 |
-
import torch_xla
|
23 |
-
import torch_xla.core
|
24 |
-
import torch_xla.core.functions
|
25 |
-
import torch_xla.core.xla_model as xm
|
26 |
-
import torch_xla.distributed.xla_multiprocessing as xmp
|
27 |
-
import torch_xla.distributed.parallel_loader as pl
|
28 |
-
import os
|
29 |
-
from shutil import copyfile
|
30 |
-
|
31 |
-
|
32 |
-
from transformers import (
|
33 |
-
AdamW,
|
34 |
-
AutoModel,
|
35 |
-
AutoTokenizer,
|
36 |
-
get_linear_schedule_with_warmup,
|
37 |
-
set_seed,
|
38 |
-
)
|
39 |
-
|
40 |
-
class AutoModelForSentenceEmbedding(nn.Module):
|
41 |
-
def __init__(self, model_name, tokenizer, normalize=True):
|
42 |
-
super(AutoModelForSentenceEmbedding, self).__init__()
|
43 |
-
|
44 |
-
self.model = AutoModel.from_pretrained(model_name)
|
45 |
-
self.normalize = normalize
|
46 |
-
self.tokenizer = tokenizer
|
47 |
-
|
48 |
-
def forward(self, **kwargs):
|
49 |
-
model_output = self.model(**kwargs)
|
50 |
-
embeddings = self.mean_pooling(model_output, kwargs['attention_mask'])
|
51 |
-
if self.normalize:
|
52 |
-
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
53 |
-
|
54 |
-
return embeddings
|
55 |
-
|
56 |
-
def mean_pooling(self, model_output, attention_mask):
|
57 |
-
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
58 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
59 |
-
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
60 |
-
|
61 |
-
def save_pretrained(self, output_path):
|
62 |
-
if xm.is_master_ordinal():
|
63 |
-
self.tokenizer.save_pretrained(output_path)
|
64 |
-
self.model.config.save_pretrained(output_path)
|
65 |
-
|
66 |
-
xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
def train_function(index, args, queue):
|
72 |
-
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
73 |
-
model = AutoModelForSentenceEmbedding(args.model, tokenizer)
|
74 |
-
|
75 |
-
|
76 |
-
### Train Loop
|
77 |
-
device = xm.xla_device()
|
78 |
-
model = model.to(device)
|
79 |
-
|
80 |
-
# Instantiate optimizer
|
81 |
-
optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True)
|
82 |
-
|
83 |
-
lr_scheduler = get_linear_schedule_with_warmup(
|
84 |
-
optimizer=optimizer,
|
85 |
-
num_warmup_steps=500,
|
86 |
-
num_training_steps=args.steps,
|
87 |
-
)
|
88 |
-
|
89 |
-
# Now we train the model
|
90 |
-
cross_entropy_loss = nn.CrossEntropyLoss()
|
91 |
-
max_grad_norm = 1
|
92 |
-
|
93 |
-
model.train()
|
94 |
-
|
95 |
-
for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()):
|
96 |
-
#### Get the batch data
|
97 |
-
batch = queue.get()
|
98 |
-
#print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch])))
|
99 |
-
|
100 |
-
|
101 |
-
if len(batch[0]) == 2: #(anchor, positive)
|
102 |
-
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
103 |
-
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
104 |
-
|
105 |
-
### Compute embeddings
|
106 |
-
embeddings_a = model(**text1.to(device))
|
107 |
-
embeddings_b = model(**text2.to(device))
|
108 |
-
|
109 |
-
### Gather all embedings
|
110 |
-
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
111 |
-
embeddings_b = torch_xla.core.functions.all_gather(embeddings_b)
|
112 |
-
|
113 |
-
### Compute similarity scores 512 x 512
|
114 |
-
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
115 |
-
|
116 |
-
### Compute cross-entropy loss
|
117 |
-
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
118 |
-
|
119 |
-
## Symmetric loss as in CLIP
|
120 |
-
loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2
|
121 |
-
|
122 |
-
else: #(anchor, positive, negative)
|
123 |
-
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
124 |
-
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
125 |
-
text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
126 |
-
|
127 |
-
embeddings_a = model(**text1.to(device))
|
128 |
-
embeddings_b1 = model(**text2.to(device))
|
129 |
-
embeddings_b2 = model(**text3.to(device))
|
130 |
-
|
131 |
-
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
132 |
-
embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1)
|
133 |
-
embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2)
|
134 |
-
|
135 |
-
embeddings_b = torch.cat([embeddings_b1, embeddings_b2])
|
136 |
-
|
137 |
-
### Compute similarity scores 512 x 1024
|
138 |
-
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
139 |
-
|
140 |
-
### Compute cross-entropy loss
|
141 |
-
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
142 |
-
|
143 |
-
## One-way loss
|
144 |
-
loss = cross_entropy_loss(scores, labels)
|
145 |
-
|
146 |
-
|
147 |
-
# Backward pass
|
148 |
-
optimizer.zero_grad()
|
149 |
-
loss.backward()
|
150 |
-
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
|
151 |
-
|
152 |
-
xm.optimizer_step(optimizer, barrier=True)
|
153 |
-
lr_scheduler.step()
|
154 |
-
|
155 |
-
|
156 |
-
#Save model
|
157 |
-
if (global_step+1) % args.save_steps == 0:
|
158 |
-
output_path = os.path.join(args.output, str(global_step+1))
|
159 |
-
xm.master_print("save model: "+output_path)
|
160 |
-
model.save_pretrained(output_path)
|
161 |
-
|
162 |
-
|
163 |
-
output_path = os.path.join(args.output, "final")
|
164 |
-
xm.master_print("save model final: "+ output_path)
|
165 |
-
model.save_pretrained(output_path)
|
166 |
-
|
167 |
-
|
168 |
-
def produce_data(args, queue, filepaths, dataset_indices):
|
169 |
-
global_batch_size = args.batch_size*args.nprocs #Global batch size
|
170 |
-
size_per_dataset = int(global_batch_size / args.datasets_per_batch) #How many datasets per batch
|
171 |
-
num_same_dataset = int(size_per_dataset / args.batch_size)
|
172 |
-
print("producer", "global_batch_size", global_batch_size)
|
173 |
-
print("producer", "size_per_dataset", size_per_dataset)
|
174 |
-
print("producer", "num_same_dataset", num_same_dataset)
|
175 |
-
|
176 |
-
datasets = []
|
177 |
-
for filepath in filepaths:
|
178 |
-
if "reddit_" in filepath: #Special dataset class for Reddit files
|
179 |
-
data_obj = RedditDataset(filepath)
|
180 |
-
else:
|
181 |
-
data_obj = Dataset(filepath)
|
182 |
-
datasets.append(iter(data_obj))
|
183 |
-
|
184 |
-
# Store if dataset is in a 2 col or 3 col format
|
185 |
-
num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)}
|
186 |
-
|
187 |
-
while True:
|
188 |
-
texts_in_batch = set()
|
189 |
-
batch_format = None #2 vs 3 col format for this batch
|
190 |
-
|
191 |
-
#Add data from several sub datasets
|
192 |
-
for _ in range(args.datasets_per_batch):
|
193 |
-
valid_dataset = False #Check that datasets have the same 2/3 col format
|
194 |
-
while not valid_dataset:
|
195 |
-
data_idx = random.choice(dataset_indices)
|
196 |
-
if batch_format is None:
|
197 |
-
batch_format = num_cols[data_idx]
|
198 |
-
valid_dataset = True
|
199 |
-
else: #Check that this dataset has the same format
|
200 |
-
valid_dataset = (batch_format == num_cols[data_idx])
|
201 |
-
|
202 |
-
#Get data from this dataset
|
203 |
-
dataset = datasets[data_idx]
|
204 |
-
for _ in range(num_same_dataset):
|
205 |
-
for _ in range(args.nprocs):
|
206 |
-
batch_device = [] #A batch for one device
|
207 |
-
while len(batch_device) < args.batch_size:
|
208 |
-
sample = next(dataset)
|
209 |
-
in_batch = False
|
210 |
-
for text in sample:
|
211 |
-
if text in texts_in_batch:
|
212 |
-
in_batch = True
|
213 |
-
break
|
214 |
-
|
215 |
-
if not in_batch:
|
216 |
-
for text in sample:
|
217 |
-
texts_in_batch.add(text)
|
218 |
-
batch_device.append(sample)
|
219 |
-
|
220 |
-
queue.put(batch_device)
|
221 |
-
|
222 |
-
|
223 |
-
class RedditDataset:
|
224 |
-
"""
|
225 |
-
A class that handles the reddit data files
|
226 |
-
"""
|
227 |
-
def __init__(self, filepath):
|
228 |
-
self.filepath = filepath
|
229 |
-
|
230 |
-
def __iter__(self):
|
231 |
-
while True:
|
232 |
-
with gzip.open(self.filepath, "rt") as fIn:
|
233 |
-
for line in fIn:
|
234 |
-
data = json.loads(line)
|
235 |
-
|
236 |
-
if "response" in data and "context" in data:
|
237 |
-
yield [data["response"], data["context"]]
|
238 |
-
|
239 |
-
class Dataset:
|
240 |
-
"""
|
241 |
-
A class that handles one dataset
|
242 |
-
"""
|
243 |
-
def __init__(self, filepath):
|
244 |
-
self.filepath = filepath
|
245 |
-
|
246 |
-
def __iter__(self):
|
247 |
-
max_dataset_size = 10*1000*1000 #Cache small datasets in memory
|
248 |
-
dataset = []
|
249 |
-
data_format = None
|
250 |
-
|
251 |
-
while dataset is None or len(dataset) == 0:
|
252 |
-
with gzip.open(self.filepath, "rt") as fIn:
|
253 |
-
for line in fIn:
|
254 |
-
data = json.loads(line)
|
255 |
-
if isinstance(data, dict):
|
256 |
-
data = data['texts']
|
257 |
-
|
258 |
-
if data_format is None:
|
259 |
-
data_format = len(data)
|
260 |
-
|
261 |
-
#Ensure that all entries are of the same 2/3 col format
|
262 |
-
assert len(data) == data_format
|
263 |
-
|
264 |
-
if dataset is not None:
|
265 |
-
dataset.append(data)
|
266 |
-
if len(dataset) >= max_dataset_size:
|
267 |
-
dataset = None
|
268 |
-
|
269 |
-
yield data
|
270 |
-
|
271 |
-
# Data loaded. Now stream to the queue
|
272 |
-
# Shuffle for each epoch
|
273 |
-
while True:
|
274 |
-
random.shuffle(dataset)
|
275 |
-
for data in dataset:
|
276 |
-
yield data
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
if __name__ == "__main__":
|
281 |
-
parser = argparse.ArgumentParser()
|
282 |
-
parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased')
|
283 |
-
parser.add_argument('--steps', type=int, default=2000)
|
284 |
-
parser.add_argument('--save_steps', type=int, default=10000)
|
285 |
-
parser.add_argument('--batch_size', type=int, default=64)
|
286 |
-
parser.add_argument('--max_length', type=int, default=128)
|
287 |
-
parser.add_argument('--nprocs', type=int, default=8)
|
288 |
-
parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch")
|
289 |
-
parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product")
|
290 |
-
parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files")
|
291 |
-
parser.add_argument('data_config', help="A data_config.json file")
|
292 |
-
parser.add_argument('output')
|
293 |
-
args = parser.parse_args()
|
294 |
-
|
295 |
-
# Ensure global batch size is divisble by data_sample_size
|
296 |
-
assert (args.batch_size*args.nprocs) % args.datasets_per_batch == 0
|
297 |
-
|
298 |
-
logging.info("Output: "+args.output)
|
299 |
-
if os.path.exists(args.output):
|
300 |
-
print("Output folder already exists.")
|
301 |
-
input("Continue?")
|
302 |
-
|
303 |
-
# Write train script to output path
|
304 |
-
os.makedirs(args.output, exist_ok=True)
|
305 |
-
|
306 |
-
data_config_path = os.path.join(args.output, 'data_config.json')
|
307 |
-
copyfile(args.data_config, data_config_path)
|
308 |
-
|
309 |
-
train_script_path = os.path.join(args.output, 'train_script.py')
|
310 |
-
copyfile(__file__, train_script_path)
|
311 |
-
with open(train_script_path, 'a') as fOut:
|
312 |
-
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
#Load data config
|
317 |
-
with open(args.data_config) as fIn:
|
318 |
-
data_config = json.load(fIn)
|
319 |
-
|
320 |
-
queue = mp.Queue(maxsize=100*args.nprocs)
|
321 |
-
|
322 |
-
filepaths = []
|
323 |
-
dataset_indices = []
|
324 |
-
for idx, data in enumerate(data_config):
|
325 |
-
filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name']))
|
326 |
-
dataset_indices.extend([idx]*data['weight'])
|
327 |
-
|
328 |
-
# Start producer
|
329 |
-
p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices))
|
330 |
-
p.start()
|
331 |
-
|
332 |
-
# Run training
|
333 |
-
print("Start processes:", args.nprocs)
|
334 |
-
xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork')
|
335 |
-
print("Training done")
|
336 |
-
print("It might be that not all processes exit automatically. In that case you must manually kill this process.")
|
337 |
-
print("With 'pkill python' you can kill all remaining python processes")
|
338 |
-
p.kill()
|
339 |
-
exit()
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
# Script was called via:
|
344 |
-
#python train_many_data_files_v2.py --steps 1000000 --batch_size 128 --model nreimers/MiniLM-L6-H384-uncased train_data_configs/all_datasets_v4.json output/all_datasets_v4_MiniLM-L6-H384-uncased-batch128
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|