File size: 4,527 Bytes
ee9bf09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27be02e
 
 
6bfe21c
 
 
2669868
27be02e
6a4a11f
 
 
 
 
 
 
 
 
 
 
27be02e
6a4a11f
 
27be02e
6a4a11f
 
27be02e
6a4a11f
 
27be02e
f48e248
6bfe21c
 
 
 
 
f48e248
6bfe21c
 
 
 
 
 
 
 
f48e248
 
 
6bfe21c
 
 
5e35deb
6bfe21c
 
 
 
 
 
 
f48e248
 
 
 
 
 
 
6bfe21c
 
f48e248
 
 
 
 
 
 
 
 
 
 
 
6bfe21c
 
f48e248
 
704fea1
6bfe21c
704fea1
 
6bfe21c
f48e248
 
 
704fea1
 
 
 
 
 
 
 
f48e248
704fea1
 
 
 
 
 
 
 
6bfe21c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: mit
datasets:
- abullard1/steam-reviews-constructiveness-binary-label-annotations-1.5k
language:
- en
base_model: albert/albert-base-v2
pipeline_tag: text-classification
library_name: transformers
tags:
- steam-reviews
- BERT
- albert-base-v2
- text-classification
- sentiment-analysis
- constructiveness
- gaming
- sentiment-analysis
- text-classification
- fine-tuned
developers: 
- Samuel Ruairí Bullard
- Marco Schreiner
thumbnail: https://i.ibb.co/Bnj0gw6/abullard1-steam-review-constructiveness-classifier-logo.png

model-index:
  - name: albert-v2-steam-review-constructiveness-classifier
    results:
      - task:
          type: text-classification
        dataset:
          name: abullard1/steam-reviews-constructiveness-binary-label-annotations-1.5k
          type: abullard1/steam-reviews-constructiveness-binary-label-annotations-1.5k
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.796
          - name: Precision
            type: precision
            value: 0.800
          - name: Recall
            type: recall
            value: 0.818
          - name: F1-score
            type: f1
            value: 0.794
---
<br>
<br>
<div style="text-align: center;">
    <img src="https://i.ibb.co/Bnj0gw6/abullard1-steam-review-constructiveness-classifier-logo.png" style="max-width: 30%; display: block; margin: 0 auto;">
</div>

<br>
<br>
<br>

<div style="text-align: center;">
    <h1>Fine-tuned ALBERT Model for Constructiveness Detection in Steam Reviews</h1>
</div>
<hr>

## Model Summary

This model is a fine-tuned version of **albert-base-v2**, designed to classify whether Steam game reviews are constructive or non-constructive. It leverages the [1.5K Steam Reviews Binary Labeled for Constructiveness dataset](https://huggingface.co/datasets/abullard1/steam-reviews-constructiveness-binary-label-annotations-1.5k), containing user-generated game reviews labeled as either:
- **1 (constructive)**
- **0 (non-constructive)**

The dataset features were combined into a single string per review, formatted as follows:
<br>
<br>
"Review: **{review}**, Playtime: **{author_playtime_at_review}**, Voted Up: **{voted_up}**, Upvotes: **{votes_up}**, Votes Funny: **{votes_funny}**" and then fed to the model accompanied by the respective ***constructive*** labels. 
<br>
<br>
This approach of concatenating the features into a simple String offers a good trade-off between complexity and performance, compared to other options.

### Intended Use

The model can be applied in any scenario where it's important to distinguish between helpful and unhelpful textual feedback, particularly in the context of gaming communities or online reviews. Potential use cases are platforms like **Steam**, **Discord**, or any community-driven feedback systems where understanding the quality of feedback is critical.

### Limitations

- **Domain Specificity**: The model was trained on Steam reviews and may not generalize well outside gaming.
- **Dataset Imbalance**: The training data has an approximate 63%-37% split between non-constructive and constructive reviews.

## Evaluation Results

The model was trained and evaluated using an 80/10/10 Train/Dev/Test split, achieving the following performance metrics during evaluation using the test set:

- **Accuracy**: 0.80
- **Precision**: 0.80
- **Recall**: 0.82
- **F1-score**: 0.79

These results indicate that the model performs reasonably well at identifying the correct label. (~80%)

<hr>

## How to Use

### Via the Huggingface Space
Explore and test the model interactively on its [Hugging Face Space](https://huggingface.co/spaces/abullard1/steam-review-constructiveness-classifier).

### Via the HF Transformers Library
To use the model programmatically, use this Python snippet:

```python
from transformers import pipeline
import torch

device = 0 if torch.cuda.is_available() else -1
torch_d_type = torch.float16 if torch.cuda.is_available() else torch.float32

base_model_name = "albert-base-v2"

finetuned_model_name = "abullard1/albert-v2-steam-review-constructiveness-classifier"

classifier = pipeline(
    task="text-classification",
    model=finetuned_model_name,
    tokenizer=base_model_name,
    device=device,
    top_k=None,
    truncation=True,
    max_length=512,
    torch_dtype=torch_d_type)

review = "Review: I think this is a great game but it still has some room for improvement., Playtime: 12, Voted Up: True, Upvotes: 1, Votes Funny: 0"
result = classifier(review)
print(result)