Delete handler.py
Browse files- handler.py +0 -44
handler.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
-
import torch
|
3 |
-
from typing import Dict, Any
|
4 |
-
|
5 |
-
class EndpointHandler:
|
6 |
-
def __init__(self, path=""):
|
7 |
-
device = 0 if torch.cuda.is_available() else -1
|
8 |
-
torch_d_type = torch.float16 if torch.cuda.is_available() else torch.float32
|
9 |
-
|
10 |
-
self.classifier = pipeline(
|
11 |
-
task="text-classification",
|
12 |
-
model="abullard1/albert-v2-steam-review-constructiveness-classifier",
|
13 |
-
tokenizer="albert-base-v2",
|
14 |
-
device=device,
|
15 |
-
top_k=None,
|
16 |
-
truncation=True,
|
17 |
-
max_length=512,
|
18 |
-
torch_dtype=torch_d_type
|
19 |
-
)
|
20 |
-
|
21 |
-
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
22 |
-
input_text = data.get("inputs", "")
|
23 |
-
|
24 |
-
results = self.classifier(input_text)
|
25 |
-
|
26 |
-
label_1, score_1 = results[0][0]["label"], results[0][0]["score"]
|
27 |
-
label_2, score_2 = results[0][1]["label"], results[0][1]["score"]
|
28 |
-
|
29 |
-
return {
|
30 |
-
"label_1": label_1,
|
31 |
-
"score_1": score_1,
|
32 |
-
"label_2": label_2,
|
33 |
-
"score_2": score_2,
|
34 |
-
"prediction_text": self.format_prediction_text(label_1, score_1, label_2, score_2)
|
35 |
-
}
|
36 |
-
|
37 |
-
def format_prediction_text(self, label_1, score_1, label_2, score_2) -> str:
|
38 |
-
def label_to_constructiveness(label):
|
39 |
-
return "Constructive" if label == "LABEL_1" else "Not Constructive"
|
40 |
-
|
41 |
-
if score_1 >= score_2:
|
42 |
-
return f"{label_to_constructiveness(label_1)} with a score of {score_1:.2f}. 👍🏻"
|
43 |
-
else:
|
44 |
-
return f"{label_to_constructiveness(label_2)} with a score of {score_2:.2f}. 👎🏻"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|