File size: 26,557 Bytes
26a9f0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
import math
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.cuda.amp import autocast
from einops import rearrange, repeat

from functools import partial
from contextlib import contextmanager

from local_attention import LocalAttention
from performer_pytorch.reversible import ReversibleSequence, SequentialSequence


try:
    from apex import amp
    APEX_AVAILABLE = True
except:
    APEX_AVAILABLE = False

# helpers

def exists(val):
    return val is not None

def empty(tensor):
    return tensor.numel() == 0

def default(val, d):
    return val if exists(val) else d

@contextmanager
def null_context():
    yield

def cast_tuple(val):
    return (val,) if not isinstance(val, tuple) else val

# def get_module_device(module):
#     return next(module.parameters).device

def get_module_device(module):
    try:
        return next(module.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5
        def find_tensor_attributes(module):
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples
        gen = module._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device

def find_modules(nn_module, type):
    return [module for module in nn_module.modules() if isinstance(module, type)]

class Always(nn.Module):
    def __init__(self, val):
        super().__init__()
        self.val = val

    def forward(self, *args, **kwargs):
        return self.val

# kernel functions

# transcribed from jax to pytorch from
# https://github.com/google-research/google-research/blob/master/performer/fast_attention/jax/fast_attention.py

def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
    b, h, *_ = data.shape

    data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.

    ratio = (projection_matrix.shape[0] ** -0.5)

    projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
    projection = projection.type_as(data)

    data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)

    diag_data = data ** 2
    diag_data = torch.sum(diag_data, dim=-1)
    diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
    diag_data = diag_data.unsqueeze(dim=-1)

    if is_query:
        data_dash = ratio * (
            torch.exp(data_dash - diag_data -
                    torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
    else:
        data_dash = ratio * (
            torch.exp(data_dash - diag_data - torch.max(data_dash)) + eps)

    return data_dash.type_as(data)

def generalized_kernel(data, *, projection_matrix, kernel_fn = nn.ReLU(), kernel_epsilon = 0.001, normalize_data = True, device = None):
    b, h, *_ = data.shape

    data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.

    if projection_matrix is None:
        return kernel_fn(data_normalizer * data) + kernel_epsilon

    projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
    projection = projection.type_as(data)

    data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)

    data_prime = kernel_fn(data_dash) + kernel_epsilon
    return data_prime.type_as(data)

def orthogonal_matrix_chunk(cols, device = None):
    unstructured_block = torch.randn((cols, cols), device = device)
    q, r = torch.qr(unstructured_block.cpu(), some = True)
    q, r = map(lambda t: t.to(device), (q, r))
    return q.t()

def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, device = None):
    nb_full_blocks = int(nb_rows / nb_columns)

    block_list = []

    for _ in range(nb_full_blocks):
        q = orthogonal_matrix_chunk(nb_columns, device = device)
        block_list.append(q)

    remaining_rows = nb_rows - nb_full_blocks * nb_columns
    if remaining_rows > 0:
        q = orthogonal_matrix_chunk(nb_columns, device = device)
        block_list.append(q[:remaining_rows])

    final_matrix = torch.cat(block_list)

    if scaling == 0:
        multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
    elif scaling == 1:
        multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
    else:
        raise ValueError(f'Invalid scaling {scaling}')

    return torch.diag(multiplier) @ final_matrix

# linear attention classes with softmax kernel

# non-causal linear attention
def linear_attention(q, k, v):
    k_cumsum = k.sum(dim = -2)
    D_inv = 1. / torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q))
    context = torch.einsum('...nd,...ne->...de', k, v)
    out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
    return out

# efficient causal linear attention, created by EPFL
# TODO: rewrite EPFL's CUDA kernel to do mixed precision and remove half to float conversion and back
def causal_linear_attention(q, k, v, eps = 1e-6):
    from fast_transformers.causal_product import CausalDotProduct
    autocast_enabled = torch.is_autocast_enabled()
    is_half = isinstance(q, torch.cuda.HalfTensor)
    assert not is_half or APEX_AVAILABLE, 'half tensors can only be used if nvidia apex is available'
    cuda_context = null_context if not autocast_enabled else partial(autocast, enabled = False)

    causal_dot_product_fn = amp.float_function(CausalDotProduct.apply) if is_half else CausalDotProduct.apply

    k_cumsum = k.cumsum(dim=-2) + eps
    D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q))

    with cuda_context():
        if autocast_enabled:
            q, k, v = map(lambda t: t.float(), (q, k, v))

        out = causal_dot_product_fn(q, k, v)

    out = torch.einsum('...nd,...n->...nd', out, D_inv)
    return out

# inefficient causal linear attention, without cuda code, for reader's reference
# not being used
def causal_linear_attention_noncuda(q, k, v, chunk_size = 128):
    last_k_cumsum = 0
    last_context_cumsum = 0
    outs = []

    for q, k, v in zip(*map(lambda t: t.chunk(chunk_size, dim = -2), (q, k, v))):
        k_cumsum = last_k_cumsum + k.cumsum(dim=-2)

        D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q))
        context = torch.einsum('...nd,...ne->...nde', k, v)
        context_cumsum = last_context_cumsum + context.cumsum(dim=-3)
        out = torch.einsum('...nde,...nd,...n->...ne', context_cumsum, q, D_inv)

        last_k_cumsum = k_cumsum[:, :, -1:]
        last_context_cumsum = context_cumsum[:, :, -1:]
        outs.append(out)

    return torch.cat(outs, dim = -2)

def norm_tensor(tensor, dim=-1):
    return tensor / tensor.sum(dim=dim).unsqueeze(dim)

class FastAttention(nn.Module):
    def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), no_projection = False):
        super().__init__()
        nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))

        self.dim_heads = dim_heads
        self.nb_features = nb_features
        self.ortho_scaling = ortho_scaling

        self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling)
        projection_matrix = self.create_projection()
        self.register_buffer('projection_matrix', projection_matrix)

        self.generalized_attention = generalized_attention
        self.kernel_fn = kernel_fn

        # if this is turned on, no projection will be used
        # queries and keys will be softmax-ed as in the original efficient attention paper
        self.no_projection = no_projection

        self.causal = causal
        if causal:
            try:
                import fast_transformers.causal_product.causal_product_cuda
                self.causal_linear_fn = partial(causal_linear_attention)
            except ImportError:
                print('unable to import cuda code for auto-regressive Performer. will default to the memory inefficient non-cuda version')
                self.causal_linear_fn = causal_linear_attention_noncuda

    @torch.no_grad()
    def redraw_projection_matrix(self, device):
        projections = self.create_projection(device = device)
        self.projection_matrix.copy_(projections)
        del projections

    def forward(self, q, k, v, output_attentions = False):
        device = q.device
        # inds = [8060, 8064, 6243, 8575, 10342, 10913, 9366, 993, 7796, 5210, 5212, 5504, 6851, 6559, 5508, 13107, 13820]
        if self.no_projection:
            q = q.softmax(dim = -1)
            k = torch.exp(k) if self.causal else k.softmax(dim = -2)

        elif self.generalized_attention:
            create_kernel = partial(generalized_kernel, kernel_fn = self.kernel_fn, projection_matrix = self.projection_matrix, device = device)
            q, k = map(create_kernel, (q, k))

        else:
            create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
            q = create_kernel(q, is_query = True)
            k = create_kernel(k, is_query = False)

        attn_fn = linear_attention if not self.causal else self.causal_linear_fn
        out = attn_fn(q, k, v)
        if output_attentions:
            v_diag = torch.eye(v.shape[-2]).to(device)
            v_diag = v_diag.unsqueeze(0).unsqueeze(0).repeat(v.shape[0],v.shape[1],1,1)
            # attn_weights = torch.zeros(1, 1, len(inds), len(inds)).to(device).to(torch.float16)
            # attn_weights = torch.zeros(1, q.shape[1], len(inds), len(inds)).to(device).to(torch.float16)
            attn_weights = torch.zeros(1, 1, q.shape[2], q.shape[2]).to(device).to(torch.float16)
            for head_dim in range(q.shape[1]):
                # attn_weights[0, head_dim] = torch.abs(attn_fn(q[:,head_dim].to(torch.float16), k[:,head_dim].to(torch.float16), v_diag[:,head_dim].to(torch.float16)))[0, inds][:, inds]
                attn_weights += torch.abs(attn_fn(q[:,head_dim].to(torch.float16), k[:,head_dim].to(torch.float16), v_diag[:,head_dim].to(torch.float16)))
                # attn_weights += norm_tensor(torch.abs(attn_fn(q[:,head_dim].to(torch.float16), k[:,head_dim].to(torch.float16), v_diag[:,head_dim].to(torch.float16))), dim=-1)
            attn_weights /= q.shape[1]
            return out, attn_weights
        else:
            return out

# classes

class ReZero(nn.Module):
    def __init__(self, fn):
        super().__init__()
        self.g = nn.Parameter(torch.tensor(1e-3))
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(x, **kwargs) * self.g

class PreScaleNorm(nn.Module):
    def __init__(self, dim, fn, eps=1e-5):
        super().__init__()
        self.fn = fn
        self.g = nn.Parameter(torch.ones(1))
        self.eps = eps

    def forward(self, x, **kwargs):
        n = torch.norm(x, dim=-1, keepdim=True).clamp(min=self.eps)
        x = x / n * self.g
        return self.fn(x, **kwargs)

class PreLayerNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)

class Chunk(nn.Module):
    def __init__(self, chunks, fn, along_dim = -1):
        super().__init__()
        self.dim = along_dim
        self.chunks = chunks
        self.fn = fn

    def forward(self, x, **kwargs):
        if self.chunks == 1:
            return self.fn(x, **kwargs)
        chunks = x.chunk(self.chunks, dim = self.dim)
        return torch.cat([self.fn(c, **kwargs) for c in chunks], dim = self.dim)

class FeedForward(nn.Module):
    def __init__(self, dim, mult = 4, dropout = 0., activation = None, glu = False):
        super().__init__()
        activation = default(activation, nn.GELU)

        self.glu = glu
        self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1))
        self.act = activation()
        self.dropout = nn.Dropout(dropout)
        self.w2 = nn.Linear(dim * mult, dim)

    def forward(self, x, **kwargs):
        if not self.glu:
            x = self.w1(x)
            x = self.act(x)
        else:
            x, v = self.w1(x).chunk(2, dim=-1)
            x = self.act(x) * v

        x = self.dropout(x)
        x = self.w2(x)
        return x

class SelfAttention(nn.Module):
    def __init__(
        self,
        dim,
        causal = False,
        heads = 8,
        dim_head = 64,
        local_heads = 0,
        local_window_size = 256,
        nb_features = None,
        feature_redraw_interval = 1000,
        generalized_attention = False,
        kernel_fn = nn.ReLU(),
        dropout = 0.,
        no_projection = False,
        qkv_bias = False
    ):
        super().__init__()
        assert dim % heads == 0, 'dimension must be divisible by number of heads'
        dim_head = default(dim_head, dim // heads)
        inner_dim = dim_head * heads
        self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, no_projection = no_projection)

        self.heads = heads
        self.global_heads = heads - local_heads
        self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None

        self.to_q = nn.Linear(dim, inner_dim, bias = qkv_bias)
        self.to_k = nn.Linear(dim, inner_dim, bias = qkv_bias)
        self.to_v = nn.Linear(dim, inner_dim, bias = qkv_bias)
        self.to_out = nn.Linear(inner_dim, dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, pos_emb = None, context = None, mask = None, context_mask = None, output_attentions = False, **kwargs):
        b, n, _, h, gh = *x.shape, self.heads, self.global_heads

        cross_attend = exists(context)

        context = default(context, x)
        context_mask = default(context_mask, mask) if not cross_attend else context_mask

        q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
        (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))

        attn_outs = []

        if not empty(q):
            if exists(context_mask):
                global_mask = context_mask[:, None, :, None]
                v.masked_fill_(~global_mask, 0.)

            if exists(pos_emb) and not cross_attend:
                q, k, = apply_rotary_pos_emb(q, k, pos_emb)

            if output_attentions:
                out, attn_weights = self.fast_attention(q, k, v, output_attentions)
            else:
                out = self.fast_attention(q, k, v)
            attn_outs.append(out)

        if not empty(lq):
            assert not cross_attend, 'local attention is not compatible with cross attention'
            out = self.local_attn(lq, lk, lv, input_mask = mask)
            attn_outs.append(out)

        out = torch.cat(attn_outs, dim = 1)     # combine attn_out and cross_attn_out, here we have only attn_out, that means this line does nothing
        out = rearrange(out, 'b h n d -> b n (h d)')
        out =  self.to_out(out)
        if output_attentions:
            return self.dropout(out), attn_weights
        else:
            return self.dropout(out)

# positional embeddings

class AbsolutePositionalEmbedding(nn.Module):
    def __init__(self, dim, max_seq_len):
        super().__init__()
        self.emb = nn.Embedding(max_seq_len, dim)

    def forward(self, x):
        t = torch.arange(x.shape[1], device=x.device)
        return self.emb(t)

# rotary positional embedding helpers

def rotate_every_two(x):
    x = rearrange(x, '... (d j) -> ... d j', j = 2)
    x1, x2 = x.unbind(dim = -1)
    x = torch.stack((-x2, x1), dim = -1)
    return rearrange(x, '... d j -> ... (d j)')

def apply_rotary_pos_emb(q, k, sinu_pos):
    sinu_pos = rearrange(sinu_pos, '() n (j d) -> n j d', j = 2)
    sin, cos = sinu_pos.unbind(dim = -2)
    sin, cos = map(lambda t: repeat(t, 'b n -> b (n j)', j = 2), (sin, cos))
    q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k))
    return q, k

# sinusoidal positional embeddings

class Gene2VecPositionalEmbedding(nn.Module):
    def __init__(self, dim, max_seq_len):
        super().__init__()
        gene2vec_weight = np.load('./data/gene2vec_16906.npy')
        gene2vec_weight = np.concatenate((gene2vec_weight, np.zeros((1, gene2vec_weight.shape[1]))), axis=0)
        gene2vec_weight = torch.from_numpy(gene2vec_weight)
        self.emb = nn.Embedding.from_pretrained(gene2vec_weight)

    def forward(self, x):
        t = torch.arange(x.shape[1], device=x.device)
        return self.emb(t)

# performer

class Performer(nn.Module):
    def __init__(
        self,
        dim,                                # dimension
        depth,                              # layers
        heads,                              # heads
        dim_head,                           # dim of head
        local_attn_heads = 0,               # num of local attention heads, (heads - local_attn_heads) is num of global performers
        local_window_size = 256,            # window size of local attention
        causal = False,                     # autoregressive or not
        ff_mult = 4,                        # dim of intermediate features after attention / dim of input features
        nb_features = None,                 # number of random features, if not set, will default to (d * log(d)), where d is the dimension of each head ?? what is random feature ??
        feature_redraw_interval = 1000,     # how frequently to redraw the projection matrix, the more frequent, the slower the training
        reversible = False,                 # reversible layers, from Reformer (save memory)
        ff_chunks = 1,                      # chunk feedforward layer, from Reformer
        generalized_attention = False,      # defaults to softmax approximation, but can be set to True for generalized attention ?? what is generalized attention ??
        kernel_fn = nn.ReLU(),              # the kernel function to be used, if generalized attention is turned on, defaults to Relu
        use_scalenorm = False,              # use scale norm, from 'Transformers without Tears' paper, a substitute for LayerNorm, priority: scalenorm.rezero.layernorm
        use_rezero = False,                 # use Rezero or not, from 'Rezero is all you need' paper, a substitute for LayerNorm, priority: scalenorm.rezero.layernorm
        ff_glu = False,                     # use GLU (Gated Linear Units) variant for feedforward
        ff_dropout = 0.,                    # feedforward dropout
        attn_dropout = 0.,                  # post-attention dropout
        cross_attend = False,               # ??
        no_projection = False,              # ??
        auto_check_redraw = True,           # ??
        qkv_bias = True,                    # ??
    ):
        super().__init__()
        layers = nn.ModuleList([])
        local_attn_heads = cast_tuple(local_attn_heads)
        local_attn_heads = local_attn_heads * depth if len(local_attn_heads) == 1 else local_attn_heads
        assert len(local_attn_heads) == depth, 'tuple specifying number of local attention heads per depth must be equal to the total depth'
        assert all(map(lambda n: n >= 0 and n <= heads, local_attn_heads)), 'local attention head value must be less than the total number of heads'

        if use_scalenorm:
            wrapper_fn = partial(PreScaleNorm, dim)
        elif use_rezero:
            wrapper_fn = ReZero
        else:
            wrapper_fn = partial(PreLayerNorm, dim)

        for _, local_heads in zip(range(depth), local_attn_heads):
            layers.append(nn.ModuleList([
                wrapper_fn(SelfAttention(dim, causal = causal, heads = heads, dim_head = dim_head, local_heads = local_heads, local_window_size = local_window_size, nb_features = nb_features, generalized_attention = generalized_attention, kernel_fn = kernel_fn, dropout = attn_dropout, no_projection = no_projection, qkv_bias = qkv_bias)),
                wrapper_fn(Chunk(ff_chunks, FeedForward(dim, mult = ff_mult, dropout = ff_dropout, glu = ff_glu), along_dim = 1))
            ]))
            # if no need cross_attend(decoder), begin next cycle
            if not cross_attend:
                continue
            layers.append(nn.ModuleList([
                wrapper_fn(SelfAttention(dim, heads = heads, dim_head = dim_head, nb_features = nb_features, generalized_attention = generalized_attention, kernel_fn = kernel_fn, dropout = attn_dropout, no_projection = no_projection)),
                wrapper_fn(Chunk(ff_chunks, FeedForward(dim, mult = ff_mult, dropout = ff_dropout, glu = ff_glu), along_dim = 1))
            ]))

        execute_type = ReversibleSequence if reversible else SequentialSequence

        route_attn = ((True, False),) * depth * (2 if cross_attend else 1)  # ((True, False), (True, False), (True, False), (True, False), (True, False), (True, False))
        route_context = ((False, False), (True, False)) * depth
        attn_route_map = {'mask': route_attn, 'pos_emb': route_attn}
        context_route_map = {'context': route_context, 'context_mask': route_context} if cross_attend else {}
        self.net = execute_type(layers, args_route = {**attn_route_map, **context_route_map})

        # keeping track of when to redraw projections for all attention layers
        self.auto_check_redraw = auto_check_redraw
        self.feature_redraw_interval = feature_redraw_interval
        self.register_buffer('calls_since_last_redraw', torch.tensor(0))

    def fix_projection_matrices_(self):
        self.feature_redraw_interval = None

    def check_redraw_projections(self):
        if not self.training:
            return

        if exists(self.feature_redraw_interval) and self.calls_since_last_redraw >= self.feature_redraw_interval:
            device = get_module_device(self)

            fast_attentions = find_modules(self, FastAttention)
            for fast_attention in fast_attentions:
                fast_attention.redraw_projection_matrix(device)

            self.calls_since_last_redraw.zero_()
            return

        self.calls_since_last_redraw += 1

    def forward(self, x, output_attentions = False, **kwargs):
        if self.auto_check_redraw:
            self.check_redraw_projections()
        return self.net(x, output_attentions = output_attentions, **kwargs)

class PerformerLM(nn.Module):
    def __init__(
        self,
        *,
        num_tokens,                         # num of tokens
        max_seq_len,                        # max length of sequence
        dim,                                # dim of tokens
        depth,                              # layers
        heads,                              # num of heads
        dim_head = 64,                      # dim of heads
        local_attn_heads = 0,
        local_window_size = 256,
        causal = False,
        ff_mult = 4,
        nb_features = None,
        feature_redraw_interval = 1000,
        reversible = False,
        ff_chunks = 1,
        ff_glu = False,
        emb_dropout = 0.,
        ff_dropout = 0.,
        attn_dropout = 0.,
        generalized_attention = False,
        kernel_fn = nn.ReLU(),
        use_scalenorm = False,
        use_rezero = False,
        cross_attend = False,
        no_projection = False,
        tie_embed = False,                  # False: output is num of tokens, True: output is dim of tokens  //multiply final embeddings with token weights for logits, like gpt decoder//
        g2v_position_emb = True,            # priority: gene2vec, no embedding
        auto_check_redraw = True,
        qkv_bias = False
    ):
        super().__init__()
        local_attn_heads = cast_tuple(local_attn_heads)

        self.max_seq_len = max_seq_len
        self.token_emb = nn.Embedding(num_tokens, dim)

        if g2v_position_emb:
            self.pos_emb = Gene2VecPositionalEmbedding(dim, max_seq_len)
            self.layer_pos_emb = Always(None)
        else:
            self.pos_emb = torch.zeros_like
            self.layer_pos_emb = Always(None)

        self.dropout = nn.Dropout(emb_dropout)

        self.performer = Performer(dim, depth, heads, dim_head, local_attn_heads, local_window_size, causal, ff_mult, nb_features, feature_redraw_interval, reversible, ff_chunks, generalized_attention, kernel_fn, use_scalenorm, use_rezero, ff_glu, ff_dropout, attn_dropout, cross_attend, no_projection, auto_check_redraw, qkv_bias)
        self.norm = nn.LayerNorm(dim)
        self.to_out = nn.Linear(dim, num_tokens) if not tie_embed else None

    def check_redraw_projections(self):
        self.performer.check_redraw_projections()

    def fix_projection_matrices_(self):
        self.performer.fix_projection_matrices_()

    def forward(self, x, return_encodings = False, output_attentions = False, **kwargs):
        b, n, device = *x.shape, x.device
        assert n <= self.max_seq_len, f'sequence length {n} must be less than the max sequence length {self.max_seq_len}'

        # token and positional embedding
        x = self.token_emb(x)
        if output_attentions:
            x.requires_grad_()    # used for attn_map output
        x += self.pos_emb(x)
        x = self.dropout(x)

        # performer layers
        layer_pos_emb = self.layer_pos_emb(x)

        if output_attentions:
            x, attn_weights = self.performer(x, pos_emb = layer_pos_emb, output_attentions = output_attentions, **kwargs)
            # norm and to logits
            x = self.norm(x)
            if return_encodings:
                return x, attn_weights

            if exists(self.to_out):
                return self.to_out(x), attn_weights

            return (x @ self.token_emb.weight.t()), attn_weights
        else:
            x = self.performer(x, pos_emb = layer_pos_emb, output_attentions = output_attentions, **kwargs)

            # norm and to logits
            x = self.norm(x)
            if return_encodings:
                return x

            if exists(self.to_out):
                x = self.to_out(x)
                return x

            return x @ self.token_emb.weight.t()