|
|
|
|
|
__author__ = "Jérôme Louradour" |
|
__credits__ = ["Jérôme Louradour"] |
|
__license__ = "GPLv3" |
|
__version__ = "1.15.4" |
|
|
|
|
|
import os |
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' |
|
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' |
|
|
|
|
|
import whisper |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from importlib.util import find_spec |
|
if find_spec("intel_extension_for_pytorch") is not None: |
|
try: |
|
import intel_extension_for_pytorch |
|
except ImportError: |
|
pass |
|
|
|
|
|
import numpy as np |
|
import dtw |
|
|
|
from scipy.ndimage import median_filter |
|
from scipy.signal import find_peaks |
|
|
|
|
|
import string |
|
import csv |
|
import sys |
|
import gzip, base64 |
|
import copy |
|
import re |
|
import shutil |
|
import json |
|
|
|
|
|
from whisper.utils import format_timestamp |
|
from whisper.audio import N_FRAMES, HOP_LENGTH, SAMPLE_RATE |
|
AUDIO_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 |
|
AUDIO_TIME_PER_TOKEN = AUDIO_SAMPLES_PER_TOKEN / SAMPLE_RATE |
|
SEGMENT_DURATION = N_FRAMES * HOP_LENGTH / SAMPLE_RATE |
|
|
|
|
|
import logging |
|
logger = logging.getLogger("whisper_timestamped") |
|
|
|
DEFAULT_BACKEND = "openai-whisper" |
|
USE_EFFICIENT_BY_DEFAULT = True |
|
TRUST_WHISPER_TIMESTAMP_BY_DEFAULT = True |
|
DISFLUENCY_MARK = "[*]" |
|
|
|
try: |
|
whisper_version = whisper.__version__ |
|
except NameError: |
|
whisper_version = "" |
|
WHIPSER_GE_20230306 = whisper_version >= "20230306" |
|
WHIPSER_GE_20230308 = whisper_version >= "20230308" |
|
|
|
def transcribe_timestamped( |
|
|
|
model, |
|
audio, |
|
language=None, |
|
task="transcribe", |
|
|
|
|
|
remove_punctuation_from_words=False, |
|
compute_word_confidence=True, |
|
include_punctuation_in_confidence=False, |
|
refine_whisper_precision=0.5, |
|
min_word_duration=0.02, |
|
plot_word_alignment=False, |
|
word_alignment_most_top_layers=None, |
|
remove_empty_words=False, |
|
use_backend_timestamps=False, |
|
|
|
|
|
seed=1234, |
|
|
|
vad=False, |
|
detect_disfluencies=False, |
|
trust_whisper_timestamps=TRUST_WHISPER_TIMESTAMP_BY_DEFAULT, |
|
naive_approach=False, |
|
|
|
|
|
temperature=0.0 if USE_EFFICIENT_BY_DEFAULT else (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), |
|
best_of=None, |
|
beam_size=None, |
|
patience=None, |
|
length_penalty=None, |
|
compression_ratio_threshold=2.4, |
|
logprob_threshold=-1.0, |
|
no_speech_threshold=0.6, |
|
fp16=None, |
|
condition_on_previous_text=True, |
|
initial_prompt=None, |
|
suppress_tokens="-1", |
|
sample_len=None, |
|
verbose=False, |
|
): |
|
""" |
|
Transcribe an audio file using Whisper |
|
|
|
Parameters |
|
---------- |
|
model: Whisper |
|
The Whisper model instance. |
|
|
|
audio: Union[str, np.ndarray, torch.Tensor] |
|
The path to the audio file to open, or the audio waveform in 16kHz. |
|
|
|
language: str |
|
The language to use for the transcription. If None, the language is detected automatically. |
|
|
|
task: str |
|
The task to perform: either "transcribe" or "translate". |
|
|
|
remove_punctuation_from_words: bool |
|
If False, words will be glued with the next punctuation mark (if any). |
|
If True, there will be no punctuation mark in the `words[:]["text"]` list. |
|
It only affects these strings; This has no influence on the computation of the word confidence, whatever the value of `include_punctuation_in_confidence` is. |
|
|
|
include_punctuation_in_confidence: bool |
|
Whether to include proba of punctuation in the computation of the (previous) word confidence. |
|
|
|
compute_word_confidence: bool |
|
Whether to compute word confidence. |
|
If True, a finer confidence for each segment will be computed as well. |
|
|
|
vad: bool or str in ["silero", "silero:3.1", "auditok"] or list of start/end timestamps pairs corresponding to speech (ex: [(0.0, 3.50), (32.43, 36.43)]) |
|
Whether to perform voice activity detection (VAD) on the audio file, to remove silent parts before transcribing with Whisper model. |
|
This should decrease hallucinations from the Whisper model. |
|
When set to True, the default VAD algorithm is used (silero). |
|
When set to a string, the corresponding VAD algorithm is used (silero, silero:3.1 or auditok). |
|
Note that the library for the corresponding VAD algorithm must be installed. |
|
|
|
detect_disfluencies: bool |
|
Whether to detect disfluencies (i.e. hesitations, filler words, repetitions, corrections, etc.) that Whisper model might have omitted in the transcription. |
|
This should make the word timestamp prediction more accurate. |
|
And probable disfluencies will be marked as special words "[*]". |
|
|
|
trust_whisper_timestamps: bool |
|
Whether to rely on Whisper's timestamps to get approximative first estimate of segment positions (up to refine_whisper_precision). |
|
|
|
refine_whisper_precision: float |
|
How much can we refine Whisper segment positions, in seconds. Must be a multiple of 0.02. |
|
|
|
min_word_duration: float |
|
Minimum duration of a word, in seconds. If a word is shorter than this, timestamps will be adjusted. |
|
|
|
plot_word_alignment: bool |
|
Whether to plot the word alignment for each segment. matplotlib must be installed to use this option. |
|
|
|
remove_empty_words: bool |
|
Whether to remove words with no duration occuring at the end of segments (probable Whisper hallucinations). |
|
|
|
use_backend_timestamps: bool |
|
Whether to use word timestamps provided by the backend (openai-whisper or transformers), instead of the ones computed by more complex heuristics of whisper-timestamped. |
|
|
|
seed: int |
|
Random seed to use for temperature sampling, for the sake of reproducibility. |
|
Choose None for unpredictable randomness. |
|
|
|
naive_approach: bool |
|
Force the naive approach that consists in decoding twice the audio file, once to get the transcritpion and once with the decoded tokens to get the alignment. |
|
Note that this approach is used anyway when beam_size is not None and/or when the temperature is a list with more than one element. |
|
|
|
temperature: float |
|
Temperature for sampling. |
|
|
|
compression_ratio_threshold: float |
|
If the gzip compression ratio is above this value, treat as failed. |
|
|
|
logprob_threshold: float |
|
If the average log probability over sampled tokens is below this value, treat as failed. |
|
|
|
no_speech_threshold: float |
|
If the no_speech probability is higher than this value AND the average log probability |
|
over sampled tokens is below `logprob_threshold`, consider the segment as silent. |
|
|
|
condition_on_previous_text: bool |
|
if True, the previous output of the model is provided as a prompt for the next window; |
|
disabling may make the text inconsistent across windows, but the model becomes less prone to |
|
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync. |
|
|
|
initial_prompt: str |
|
Optional text to provide as a prompt for the first window. |
|
|
|
suppress_tokens: str |
|
Comma-separated list of token ids to suppress during sampling; |
|
'-1' will suppress most special characters except common punctuations. |
|
|
|
verbose: bool |
|
Whether to display the text being decoded to the console. If True, displays all the details, |
|
If False, displays minimal details. If None, does not display anything |
|
|
|
Returns |
|
------- |
|
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and |
|
the spoken language ("language"), which is detected when `decode_options["language"]` is None. |
|
""" |
|
|
|
if seed is not None: |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
assert refine_whisper_precision >= 0 and refine_whisper_precision / AUDIO_TIME_PER_TOKEN == round(refine_whisper_precision / AUDIO_TIME_PER_TOKEN), f"refine_whisper_precision must be a positive multiple of {AUDIO_TIME_PER_TOKEN}" |
|
refine_whisper_precision_nframes = round(refine_whisper_precision / AUDIO_TIME_PER_TOKEN) |
|
assert min_word_duration >= 0, f"min_word_duration must be a positive number" |
|
assert word_alignment_most_top_layers is None or word_alignment_most_top_layers > 0, f"word_alignment_most_top_layers must be a strictly positive number" |
|
|
|
if isinstance(temperature, (list, tuple)) and len(temperature) == 1: |
|
temperature = temperature[0] |
|
if isinstance(temperature, (list, tuple)): |
|
naive_approach = True |
|
elif temperature > 0 and best_of is not None and best_of > 1: |
|
naive_approach = True |
|
if beam_size is not None: |
|
naive_approach = True |
|
|
|
|
|
|
|
if is_transformer_model(model) or use_backend_timestamps: |
|
naive_approach = True |
|
|
|
|
|
vad = check_vad_method(vad) |
|
if isinstance(model, str): |
|
model = load_model(model) |
|
if fp16 is None: |
|
fp16 = model.device != torch.device("cpu") |
|
|
|
|
|
input_stride = N_FRAMES // model.dims.n_audio_ctx |
|
time_precision = input_stride * HOP_LENGTH / SAMPLE_RATE |
|
assert time_precision == AUDIO_TIME_PER_TOKEN |
|
|
|
alignment_heads = get_alignment_heads(model) if word_alignment_most_top_layers is None else None |
|
if alignment_heads is None and word_alignment_most_top_layers is None: |
|
word_alignment_most_top_layers = 6 |
|
|
|
alignment_options = dict( |
|
remove_punctuation_from_words=remove_punctuation_from_words, |
|
compute_word_confidence=compute_word_confidence, |
|
include_punctuation_in_confidence=include_punctuation_in_confidence, |
|
detect_disfluencies=detect_disfluencies, |
|
refine_whisper_precision_nframes=refine_whisper_precision_nframes, |
|
plot_word_alignment=plot_word_alignment, |
|
word_alignment_most_top_layers=word_alignment_most_top_layers, |
|
alignment_heads=alignment_heads, |
|
) |
|
whisper_options = dict( |
|
language=language, |
|
task=task, |
|
fp16=fp16, |
|
temperature=temperature, |
|
best_of=best_of, |
|
beam_size=beam_size, |
|
patience=patience, |
|
length_penalty=length_penalty, |
|
condition_on_previous_text=condition_on_previous_text, |
|
initial_prompt=initial_prompt, |
|
suppress_tokens=suppress_tokens, |
|
sample_len=sample_len, |
|
verbose=verbose if (not vad or verbose is not True) else False, |
|
) |
|
other_options = dict( |
|
no_speech_threshold=no_speech_threshold, |
|
logprob_threshold=logprob_threshold, |
|
compression_ratio_threshold=compression_ratio_threshold, |
|
) |
|
|
|
if vad is not None: |
|
audio = get_audio_tensor(audio) |
|
audio, vad_segments, convert_timestamps = remove_non_speech(audio, method=vad, sample_rate=SAMPLE_RATE, plot=plot_word_alignment, avoid_empty_speech=True) |
|
else: |
|
vad_segments = None |
|
|
|
global num_alignment_for_plot |
|
num_alignment_for_plot = 0 |
|
|
|
if naive_approach: |
|
(transcription, words) = _transcribe_timestamped_naive(model, audio, |
|
min_word_duration=0.0, |
|
trust_whisper_timestamps=trust_whisper_timestamps, |
|
use_backend_timestamps=use_backend_timestamps, |
|
**alignment_options, **whisper_options, **other_options) |
|
else: |
|
(transcription, words) = _transcribe_timestamped_efficient(model, audio, |
|
trust_whisper_timestamps=trust_whisper_timestamps, |
|
**alignment_options, **whisper_options, **other_options) |
|
if remove_empty_words: |
|
|
|
transcription, words = remove_last_null_duration_words(transcription, words, recompute_text=True) |
|
|
|
|
|
ensure_increasing_positions(words, min_duration=min_word_duration if trust_whisper_timestamps else 0) |
|
|
|
|
|
whisper_segments = transcription["segments"] |
|
for word in words: |
|
if verbose and not naive_approach and not vad: |
|
print_timestamped(word) |
|
word.pop("tokens", None) |
|
word.pop("tokens_indices", None) |
|
if "avg_logprob_reliable" in word: |
|
word.pop("avg_logprob_reliable") |
|
idx_segment = word.pop("idx_segment") |
|
assert idx_segment < len(whisper_segments), f"Fatal error: Got unexpected segment index {idx_segment} >= {len(whisper_segments)}" |
|
segment = whisper_segments[idx_segment] |
|
if "words" in segment: |
|
segment["words"].append(word) |
|
else: |
|
segment["words"] = [word] |
|
if refine_whisper_precision: |
|
segment["start"] = word["start"] |
|
if refine_whisper_precision: |
|
segment["end"] = word["end"] |
|
|
|
if vad: |
|
|
|
for segment in whisper_segments: |
|
for word in segment.get("words", []): |
|
word["start"], word["end"] = convert_timestamps(word["start"], word["end"]) |
|
if verbose: |
|
print_timestamped(word) |
|
if refine_whisper_precision and len(segment.get("words", [])): |
|
segment["start"] = segment["words"][0]["start"] |
|
segment["end"] = segment["words"][-1]["end"] |
|
else: |
|
segment["start"], segment["end"] = convert_timestamps(segment["start"], segment["end"]) |
|
|
|
if vad_segments is not None: |
|
transcription["speech_activity"] = [{"start":s, "end":e} for (s,e) in vad_segments] |
|
|
|
return transcription |
|
|
|
def _transcribe_timestamped_efficient( |
|
model, |
|
audio, |
|
remove_punctuation_from_words, |
|
compute_word_confidence, |
|
include_punctuation_in_confidence, |
|
refine_whisper_precision_nframes, |
|
alignment_heads, |
|
plot_word_alignment, |
|
word_alignment_most_top_layers, |
|
detect_disfluencies, |
|
trust_whisper_timestamps, |
|
use_timestamps_for_alignment = True, |
|
|
|
**whisper_options, |
|
): |
|
|
|
|
|
sample_len = whisper_options["sample_len"] |
|
temperature = whisper_options["temperature"] |
|
no_speech_threshold = whisper_options["no_speech_threshold"] |
|
logprob_threshold = whisper_options["logprob_threshold"] |
|
verbose = whisper_options["verbose"] |
|
|
|
verbose_bugged = False |
|
whisper_options["verbose"] = None if whisper_options["verbose"] is True else whisper_options["verbose"] |
|
|
|
logit_filters = get_logit_filters(model, whisper_options) |
|
language = whisper_options["language"] |
|
tokenizer = get_tokenizer(model, task=whisper_options["task"], language=language) |
|
|
|
max_sample_len = sample_len or model.dims.n_text_ctx // 2 |
|
n_ctx = model.dims.n_text_ctx |
|
|
|
debug = logger.getEffectiveLevel() >= logging.DEBUG |
|
|
|
word_alignment_most_top_layers = float("inf") if word_alignment_most_top_layers is None else word_alignment_most_top_layers |
|
|
|
|
|
timestamped_word_segments = [] |
|
|
|
segment_tokens = [[]] |
|
segment_attweights = [[] for _ in range(min(word_alignment_most_top_layers, len(model.decoder.blocks)))] |
|
|
|
segment_avglogprobs = [] |
|
segment_logprobs = [] |
|
|
|
sot_index = None |
|
no_speech_prob = None |
|
chunk_logprobs = [] |
|
chunk_tokens = [] |
|
chunk_tokens_nosot = [] |
|
last_chunk_token = None |
|
last_token_fallback = None |
|
has_started = False |
|
mfcc = None |
|
new_mfcc = None |
|
num_inference_steps = 0 |
|
language_probs = None |
|
|
|
def is_sot(curr_tokens): |
|
return curr_tokens is None or len(curr_tokens) > 1 or curr_tokens[0] == tokenizer.sot |
|
|
|
def has_reached_decoding_limit(): |
|
n = len(chunk_tokens_nosot) + 1 |
|
m = n + (len(chunk_tokens[0]) if len(chunk_tokens) > 0 else 0) |
|
return n + 1 >= max_sample_len or m > n_ctx |
|
|
|
def reset(add_segment, keep_last_token=True): |
|
""" Reset the list of tokens for the current speech segment, and corresponding cross-attention weights """ |
|
nonlocal segment_tokens, segment_attweights |
|
if add_segment: |
|
if keep_last_token: |
|
segment_tokens.append([segment_tokens[-1][-1]]) |
|
segment_attweights = [w[-1:] for w in segment_attweights] |
|
else: |
|
segment_tokens.append([]) |
|
segment_attweights = [[] for w in segment_attweights] |
|
segment_tokens[-2].pop(0) |
|
elif len(segment_tokens[-1]) > 0: |
|
if debug: |
|
logger.debug(f"Reset last segment: {tokenizer.decode_with_timestamps(segment_tokens[-1])}") |
|
segment_tokens[-1] = [] |
|
segment_attweights = [[] for w in segment_attweights] |
|
|
|
saw_consecutive_timestamps = False |
|
def must_flush_segment(curr_tokens): |
|
""" Return whether or not the previously collected tokens must be used to add a new speech segment """ |
|
nonlocal segment_tokens, saw_consecutive_timestamps, chunk_tokens_nosot |
|
|
|
if not is_sot(curr_tokens): |
|
is_timestamp = curr_tokens[0] >= tokenizer.timestamp_begin |
|
is_previous_timestamp = segment_tokens[-1][-1] >= tokenizer.timestamp_begin if len(segment_tokens[-1]) > 0 else False |
|
consecutive_timestamps = is_timestamp and is_previous_timestamp |
|
if consecutive_timestamps: |
|
saw_consecutive_timestamps = True |
|
return consecutive_timestamps |
|
else: |
|
|
|
must_flush = len(segment_tokens[-1]) > 1 and not saw_consecutive_timestamps |
|
if not must_flush and WHIPSER_GE_20230306: |
|
if last_chunk_token is None: |
|
must_flush = (len(segment_tokens[-1]) > 2 and segment_tokens[-1][-1] >= tokenizer.timestamp_begin) |
|
else: |
|
must_flush = (last_chunk_token >= tokenizer.timestamp_begin) |
|
if not must_flush and trust_whisper_timestamps: |
|
|
|
reset(False) |
|
saw_consecutive_timestamps = False |
|
return must_flush |
|
|
|
index_begin_30sec_chunck = 0 |
|
def get_index_begin_30sec_chunck(curr_tokens): |
|
nonlocal index_begin_30sec_chunck, has_started |
|
|
|
if is_sot(curr_tokens) and has_started: |
|
if trust_whisper_timestamps: |
|
res = index_begin_30sec_chunck |
|
index_begin_30sec_chunck = len(segment_tokens)-1 |
|
else: |
|
res = len(segment_tokens)-1 |
|
return res |
|
|
|
def align_last_segment(curr_tokens=None): |
|
nonlocal segment_tokens, segment_attweights, timestamped_word_segments, has_started, no_speech_prob, chunk_tokens, chunk_tokens_nosot, chunk_logprobs, mfcc, new_mfcc, logit_filters, index_begin_30sec_chunck, last_token_fallback, num_inference_steps |
|
|
|
if debug and trust_whisper_timestamps: |
|
logger.debug(f"Add segment {len(timestamped_word_segments)+1} at step {num_inference_steps}:\n\t{tokenizer.decode_with_timestamps(segment_tokens[-1])}") |
|
|
|
tokens = segment_tokens[-1][1:] |
|
|
|
|
|
|
|
unfinished_decoding = has_reached_decoding_limit() |
|
last_is_not_timestamp = len(tokens) and tokens[-1] < tokenizer.timestamp_begin |
|
last_token_reliable = True |
|
|
|
if unfinished_decoding: |
|
logger.debug(f"WARNING: decoding hit the max limit for segment {segment_tokens[-1]} (It usually happens when the language model gets stuck)") |
|
|
|
if curr_tokens is not None and curr_tokens[0] == tokenizer.sot_prev: |
|
index_sot = (curr_tokens == tokenizer.sot).nonzero(as_tuple=True) |
|
assert len(index_sot) == 1 |
|
index_sot = index_sot[0].item() |
|
assert index_sot > 0 |
|
last_token_fallback = curr_tokens[index_sot-1].item() |
|
logger.debug(f" Guessed last token from the prompt for the new chunk: {last_token_fallback}") |
|
|
|
else: |
|
last_token_fallback = torch.argmax(chunk_logprobs[-1]).item() if last_chunk_token is None else last_chunk_token |
|
last_token_reliable = (temperature == 0) |
|
logger.debug(f" Guess last token using probas (assuming greedy decoding): {last_token_fallback}") |
|
if debug: |
|
logger.debug(f"WARNING: also add last token: {tokenizer.decode_with_timestamps([last_token_fallback])}") |
|
|
|
tokens.append(last_token_fallback) |
|
segment_tokens[-1].append(last_token_fallback) |
|
attention_weights = [torch.cat(w, dim=-2) for w in segment_attweights] |
|
last_logprobs = chunk_logprobs[-1] |
|
elif last_is_not_timestamp: |
|
logger.debug(f"WARNING: end timestamp not produced. Adding <|endoftext|>") |
|
tokens.append(tokenizer.eot) |
|
segment_tokens[-1].append(tokenizer.eot) |
|
attention_weights = [torch.cat(w, dim=-2) for w in segment_attweights] |
|
last_logprobs = chunk_logprobs[-1] |
|
else: |
|
attention_weights = [torch.cat(w[:-1], dim=-2) for w in segment_attweights] |
|
last_logprobs = chunk_logprobs[-2] |
|
|
|
|
|
end_token = tokens[-1] |
|
if end_token >= tokenizer.timestamp_begin: |
|
start_token = tokens[0] |
|
assert start_token >= tokenizer.timestamp_begin |
|
|
|
if end_token <= start_token: |
|
new_end_token = last_logprobs[start_token+1:].argmax() + start_token + 1 |
|
tokens[-1] = new_end_token.item() |
|
if debug: |
|
logger.debug(f"Re-estimated end token {tokenizer.decode_with_timestamps([new_end_token])} (was {tokenizer.decode_with_timestamps([end_token])}) to be after start token {tokenizer.decode_with_timestamps([start_token])}") |
|
|
|
if len(tokens) <= 1: |
|
|
|
ws = [] |
|
else: |
|
ws = perform_word_alignment( |
|
tokens, |
|
attention_weights, |
|
tokenizer, |
|
use_space=should_use_space(language), |
|
alignment_heads=alignment_heads, |
|
remove_punctuation_from_words=remove_punctuation_from_words, |
|
refine_whisper_precision_nframes=refine_whisper_precision_nframes, |
|
detect_disfluencies=detect_disfluencies, |
|
unfinished_decoding=unfinished_decoding, |
|
mfcc=mfcc, |
|
plot=plot_word_alignment, |
|
debug=debug, |
|
) |
|
|
|
add_segment = len(ws) > 0 |
|
if add_segment: |
|
timestamped_word_segments.append(ws) |
|
else: |
|
logger.debug(f"Not added!") |
|
reset(add_segment, not is_sot(curr_tokens)) |
|
|
|
return add_segment, unfinished_decoding, last_token_reliable |
|
|
|
def may_flush_segment(curr_tokens = None): |
|
""" Add a speech segment with the new tokens if necessary. |
|
May also remove the last collected segments if filtered out by Whisper (no_speech_prob <= no_speech_threshold) |
|
""" |
|
nonlocal segment_tokens, segment_attweights, timestamped_word_segments, segment_logprobs, has_started, no_speech_prob, chunk_tokens, chunk_tokens_nosot, chunk_logprobs, mfcc, new_mfcc, logit_filters, index_begin_30sec_chunck, last_token_fallback, num_inference_steps, last_chunk_token |
|
|
|
|
|
unfinished_decoding = False |
|
last_token_reliable = True |
|
|
|
if must_flush_segment(curr_tokens) and trust_whisper_timestamps: |
|
_, unfinished_decoding, last_token_reliable = align_last_segment(curr_tokens) |
|
|
|
i_start = get_index_begin_30sec_chunck(curr_tokens) |
|
|
|
|
|
if i_start is not None: |
|
|
|
if not trust_whisper_timestamps: |
|
|
|
tokens = torch.Tensor(segment_tokens[-1]).int() |
|
idx_task = torch.where(tokens==tokenizer.sot_sequence[-1])[0][0].item() |
|
|
|
is_special = tokens.ge(tokenizer.eot) |
|
|
|
is_special[:idx_task] = True |
|
|
|
is_special[idx_task:idx_task+2] = False |
|
|
|
is_timestamp = tokens.ge(tokenizer.timestamp_begin) |
|
consecutive = torch.where(is_timestamp[1:] & is_timestamp[:-1])[0] |
|
if (WHIPSER_GE_20230306 or has_reached_decoding_limit()) and ( |
|
(is_timestamp[-1] and not is_timestamp[-2]) if last_chunk_token is None else |
|
last_chunk_token >= tokenizer.timestamp_begin and not is_timestamp[-2] |
|
): |
|
consecutive = torch.cat([consecutive, torch.Tensor([len(tokens)-1]).int()]) |
|
last_is_timestamp = True |
|
if len(consecutive): |
|
|
|
is_special[consecutive[-1]+1:] = True |
|
|
|
is_special[consecutive[-1]] = False |
|
elif is_timestamp[-1]: |
|
|
|
is_special[-1] = False |
|
else: |
|
last_is_timestamp = False |
|
|
|
if use_timestamps_for_alignment and len(consecutive): |
|
|
|
is_special[idx_task+2:consecutive[-1]] = False |
|
|
|
|
|
is_next_achar = ~torch.cat([is_special[1:], torch.Tensor([False]).bool()]) |
|
for i, weights in enumerate(segment_attweights): |
|
assert len(weights) == len(tokens), f"{len(weights)} attention weights != {len(tokens)}" |
|
|
|
segment_attweights[i] = [w for s, w in zip(is_next_achar, weights) if s] |
|
tokens_filtered = tokens[~is_special] |
|
assert len(segment_attweights[0]) == len(tokens_filtered), f"{len(segment_attweights[0])} attention weights != {len(tokens_filtered)} " |
|
|
|
|
|
orig_start, orig_end = tokens_filtered[1].item(), tokens_filtered[-1].item() |
|
tokens_filtered[1] = tokenizer.timestamp_begin |
|
if last_is_timestamp: |
|
tokens_filtered[-1] = tokenizer.timestamp_begin + N_FRAMES // 2 |
|
segment_tokens[-1] = tokens_filtered.tolist() |
|
|
|
|
|
added, unfinished_decoding, last_token_reliable = align_last_segment() |
|
|
|
|
|
if added: |
|
if len(consecutive) > 1: |
|
segments_timestamped_concat = timestamped_word_segments[-1] |
|
new_segments_timestamped = [] |
|
new_segment_tokens = [] |
|
start = idx_task+1 |
|
i_word = 0 |
|
for i, end in enumerate(consecutive): |
|
end = end.item() |
|
new_segment_tokens.append(tokens[start:end+1].tolist()) |
|
if debug: |
|
logger.debug(f"Add segment {len(timestamped_word_segments)+i}:\n\t{tokenizer.decode_with_timestamps(new_segment_tokens[-1])}") |
|
total_length = end - start - 1 |
|
start = end+1 |
|
length = 0 |
|
new_segments_timestamped.append([]) |
|
while length < total_length: |
|
if not use_timestamps_for_alignment and i_word == len(segments_timestamped_concat): |
|
|
|
assert total_length == 1 and i == len(consecutive)-1, "Unexpected situation!" |
|
break |
|
assert i_word < len(segments_timestamped_concat), f"i_word={i_word} < len(segments_timestamped_concat)={len(segments_timestamped_concat)}" |
|
word = segments_timestamped_concat[i_word] |
|
new_segments_timestamped[-1].append(word) |
|
length += len(word["tokens_indices"]) |
|
i_word += 1 |
|
|
|
if use_timestamps_for_alignment: |
|
assert length == total_length, f"length={length} != total_length={total_length}" |
|
elif length > total_length: |
|
delta = length - total_length |
|
word = new_segments_timestamped[-1][-1] |
|
word_tokindices = word["tokens_indices"] |
|
word_tokens = word["tokens"] |
|
word["tokens_indices"] = word_tokindices[:-delta] |
|
word["tokens"] = word_tokens[:-delta] |
|
word["word"] = "".join(word_tokens[:-delta]) |
|
i_word -= 1 |
|
t = segments_timestamped_concat[i_word]["end"] |
|
segments_timestamped_concat[i_word] = dict( |
|
text="".join(word_tokens[-delta:]), |
|
start=t, end=t, |
|
tokens=word_tokens[-delta:], |
|
tokens_indices=word_tokindices[-delta:], |
|
) |
|
|
|
assert i_word == len(segments_timestamped_concat) |
|
|
|
segment_tokens = segment_tokens[:-2] + new_segment_tokens + [segment_tokens[-1]] |
|
timestamped_word_segments = timestamped_word_segments[:-1] + new_segments_timestamped |
|
|
|
else: |
|
|
|
|
|
segment = segment_tokens[-2] |
|
tokenizer.decode_with_timestamps([orig_start,orig_end]) |
|
segment[0] = orig_start |
|
if last_is_timestamp: |
|
segment[-1] = orig_end |
|
|
|
if debug: |
|
logger.debug(f"Add segment {len(timestamped_word_segments)}:\n\t{tokenizer.decode_with_timestamps(segment)}") |
|
|
|
if unfinished_decoding: |
|
timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = last_token_reliable |
|
|
|
reset(False) |
|
|
|
mfcc = new_mfcc |
|
|
|
n_segments = len(segment_tokens)-1 |
|
|
|
|
|
should_skip = False |
|
if compute_word_confidence or no_speech_threshold is not None: |
|
|
|
|
|
should_skip = (no_speech_prob > no_speech_threshold) if (no_speech_threshold is not None) else False |
|
if compute_word_confidence or (should_skip and logprob_threshold is not None): |
|
n = len(chunk_logprobs) |
|
if n == len(chunk_tokens_nosot): |
|
chunk_tokens_nosot = chunk_tokens_nosot[1:] |
|
if unfinished_decoding: |
|
assert last_token_fallback is not None |
|
last_tokens = [last_token_fallback] |
|
timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = last_token_reliable |
|
n += 1 |
|
elif has_reached_decoding_limit(): |
|
|
|
last_tokens = [torch.argmax(chunk_logprobs[-1]).item()] |
|
timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = (temperature == 0) |
|
else: |
|
last_tokens = [tokenizer.eot] |
|
chunck_indices = chunk_tokens_nosot + last_tokens |
|
assert len(chunk_logprobs) == len(chunck_indices), f"{len(chunk_logprobs)} != {len(chunck_indices)}" |
|
logprobs = torch.cat([logprob[i].unsqueeze(0) for (logprob, i) in zip(chunk_logprobs, chunck_indices)]) |
|
assert min([p.isfinite().item() for p in logprobs]), \ |
|
f"Got infinite logprob among ({len(logprobs)}) {[(i, tokenizer.decode_with_timestamps([i]), v.item()) for (i,v) in zip(chunck_indices, logprobs)]}" |
|
sum_logprob = sum(logprobs) |
|
avg_logprob = sum_logprob/n |
|
|
|
if logprob_threshold is not None and avg_logprob > logprob_threshold: |
|
should_skip = False |
|
|
|
if should_skip: |
|
logger.debug(f"Skipping last {n_segments-i_start} segments (no_speech_prob {no_speech_prob} > {no_speech_threshold} and avg_logprob {avg_logprob} < {logprob_threshold})") |
|
index_begin_30sec_chunck -= n_segments-i_start |
|
segment_tokens = segment_tokens[:i_start] + [segment_tokens[-1]] |
|
timestamped_word_segments = timestamped_word_segments[:i_start] |
|
elif compute_word_confidence: |
|
avg_logprob = avg_logprob.item() |
|
i_token_end = -1 |
|
for i in range(i_start, n_segments): |
|
tokens = segment_tokens[i] |
|
i_token_start = i_token_end + 1 |
|
i_token_end = i_token_start + len(tokens) |
|
assert chunck_indices[i_token_start:i_token_end] == tokens, f"Inconsistent token list {tokenizer.decode_with_timestamps(chunck_indices[i_token_start:i_token_end])} != {tokenizer.decode_with_timestamps(tokens)}" |
|
i_token_start += 1 |
|
if not unfinished_decoding or i != n_segments-1: |
|
i_token_end -= 1 |
|
segment_logprobs.append(logprobs[i_token_start:i_token_end]) |
|
segment_avglogprobs.append(avg_logprob) |
|
else: |
|
for i in range(i_start, n_segments): |
|
segment_logprobs.append(None) |
|
segment_avglogprobs.append(None) |
|
|
|
else: |
|
for i in range(i_start, n_segments): |
|
segment_logprobs.append(None) |
|
segment_avglogprobs.append(None) |
|
|
|
if verbose_bugged and not should_skip: |
|
for segment in timestamped_word_segments[i_start:]: |
|
for word in segment: |
|
print_timestamped(word) |
|
|
|
|
|
chunk_tokens = [] |
|
chunk_tokens_nosot = [] |
|
chunk_logprobs = [] |
|
no_speech_prob = None |
|
|
|
def hook_attention_weights(layer, ins, outs, index): |
|
nonlocal segment_attweights |
|
|
|
assert isinstance(outs, tuple) and len(outs) == 2, "whisper seems to be outdated, please update it (pip install --upgrade --no-deps --force-reinstall git+https://github.com/openai/whisper.git)" |
|
if not has_started: |
|
return |
|
w = outs[-1] |
|
|
|
if w.shape[-2] > 1: |
|
w = w[:, :, -1:, :] |
|
segment_attweights[index].append(w.cpu()) |
|
|
|
def hook_mfcc(layer, ins, outs): |
|
nonlocal new_mfcc, mfcc |
|
new_mfcc = ins[0] |
|
if mfcc is None: |
|
mfcc = new_mfcc |
|
|
|
def hook_input_tokens(layer, ins, outs): |
|
nonlocal segment_tokens, sot_index, chunk_tokens, chunk_tokens_nosot, logit_filters, has_started, language, num_inference_steps |
|
num_inference_steps += 1 |
|
|
|
curr_tokens = ins[0] |
|
assert curr_tokens.shape[0] == 1, "Batch decoding is not supported" |
|
curr_tokens = curr_tokens.squeeze(0) |
|
|
|
if is_sot(curr_tokens): |
|
chunk_prompt = curr_tokens.tolist() |
|
if language is None: |
|
if len(curr_tokens) > 1: |
|
language = tokenizer.decode(curr_tokens[-2:-1]) |
|
language = language[2:-2] |
|
whisper_options["language"] = language |
|
|
|
if verbose and not whisper_options["verbose"] and len(curr_tokens) > 1: |
|
|
|
print(f"Detected language: {whisper.tokenizer.LANGUAGES[language].title()}") |
|
sys.stdout.flush() |
|
|
|
logit_filters = get_logit_filters(model, whisper_options, prompt = chunk_prompt[1:-len(tokenizer.sot_sequence)]) |
|
|
|
may_flush_segment(curr_tokens) |
|
|
|
|
|
if is_sot(curr_tokens): |
|
has_started = len(curr_tokens) > 1 or not model.is_multilingual |
|
if no_speech_threshold is not None: |
|
sot_index = curr_tokens.tolist().index(tokenizer.sot) |
|
else: |
|
sot_index = None |
|
|
|
|
|
if has_started: |
|
segment_tokens[-1].append(curr_tokens[-1].item()) |
|
|
|
|
|
if has_started: |
|
chunk_tokens.append(curr_tokens) |
|
if not is_sot(curr_tokens): |
|
chunk_tokens_nosot.append(curr_tokens[-1].item()) |
|
else: |
|
if verbose and not whisper_options["verbose"]: |
|
|
|
print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language") |
|
|
|
embedding_weights = None |
|
def hook_output_logits(layer, ins, outs): |
|
nonlocal no_speech_prob, chunk_logprobs, segment_tokens, chunk_tokens, chunk_tokens_nosot, last_chunk_token, embedding_weights, has_started, language, language_probs |
|
|
|
if embedding_weights is None: |
|
embedding_weights = torch.transpose(model.decoder.token_embedding.weight, 0, 1).to(outs[0].dtype) |
|
|
|
|
|
if sot_index is not None and no_speech_prob is None: |
|
logits = (outs[0][sot_index,:] @ embedding_weights).float() |
|
logits = logits.softmax(dim=-1) |
|
no_speech_prob = logits[tokenizer.no_speech].item() |
|
|
|
|
|
if language is None and sot_index is not None and model.is_multilingual: |
|
index_start = tokenizer.sot + 1 |
|
index_end = index_start + len(tokenizer.all_language_tokens) |
|
logits = (outs[0][sot_index,:] @ embedding_weights).float() |
|
language_probs = logits[index_start:index_end].softmax(dim=-1) |
|
language_probs = dict(zip(whisper.tokenizer.LANGUAGES, language_probs.tolist())) |
|
|
|
|
|
if has_started: |
|
logits = (outs[0][-1:,:] @ embedding_weights).float() |
|
tokens = torch.cat(chunk_tokens).unsqueeze(0) |
|
for logit_filter in logit_filters: |
|
logit_filter.apply(logits, tokens) |
|
logits = F.log_softmax(logits.squeeze(0), dim=-1) |
|
chunk_logprobs.append(logits) |
|
|
|
if WHIPSER_GE_20230306 and has_reached_decoding_limit(): |
|
last_chunk_token = torch.argmax(logits).item() |
|
else: |
|
last_chunk_token = None |
|
|
|
try: |
|
|
|
|
|
all_hooks = [] |
|
all_hooks.append(model.encoder.conv1.register_forward_hook(hook_mfcc)) |
|
all_hooks.append(model.decoder.token_embedding.register_forward_hook(hook_input_tokens)) |
|
nblocks = len(model.decoder.blocks) |
|
j = 0 |
|
for i, block in enumerate(model.decoder.blocks): |
|
if i < nblocks - word_alignment_most_top_layers: |
|
continue |
|
all_hooks.append( |
|
block.cross_attn.register_forward_hook( |
|
lambda layer, ins, outs, index=j: hook_attention_weights(layer, ins, outs, index)) |
|
) |
|
j += 1 |
|
if compute_word_confidence or no_speech_threshold is not None: |
|
all_hooks.append(model.decoder.ln.register_forward_hook(hook_output_logits)) |
|
|
|
transcription = model.transcribe(audio, **whisper_options) |
|
|
|
finally: |
|
|
|
|
|
for hook in all_hooks: |
|
hook.remove() |
|
|
|
|
|
may_flush_segment() |
|
segment_tokens.pop(-1) |
|
|
|
token_special_idx = min(tokenizer.sot, tokenizer.eot) |
|
def filter_tokens(tokens): |
|
while len(tokens) and tokens[0] >= token_special_idx: |
|
tokens = tokens[1:] |
|
while len(tokens) and tokens[-1] >= token_special_idx: |
|
tokens = tokens[:-1] |
|
return tokens |
|
|
|
assert len(segment_tokens) == len(timestamped_word_segments), f"Inconsistent number of segments: tokens ({len(segment_tokens)}) != timestamped_word_segments ({len(timestamped_word_segments)})" |
|
assert len(segment_avglogprobs) == len(segment_tokens), f"Inconsistent number of segments: avg logprobs ({len(segment_avglogprobs)}) != tokens ({len(segment_tokens)})" |
|
assert len(segment_logprobs) == len(segment_tokens), f"Inconsistent number of segments: logprobs ({len(segment_logprobs)}) != tokens ({len(segment_tokens)})" |
|
|
|
whisper_segments = transcription["segments"] |
|
|
|
if any(not s["text"] for s in whisper_segments): |
|
whisper_segments = [s for s in whisper_segments if s["text"]] |
|
l1 = len(whisper_segments) |
|
l2 = len(timestamped_word_segments) |
|
if l1 != l2 and l1 != 0: |
|
logger.warning(f"Inconsistent number of segments: whisper_segments ({l1}) != timestamped_word_segments ({l2})") |
|
assert l1 == l2 or l1 == 0, f"Inconsistent number of segments: whisper_segments ({l1}) != timestamped_word_segments ({l2})" |
|
|
|
logger.debug("Compile results") |
|
words = [] |
|
for i, (segment, timestamped_words, token, avglogprob, logprobs) in enumerate(zip(whisper_segments, timestamped_word_segments, segment_tokens, segment_avglogprobs, segment_logprobs)): |
|
timestamped_tokens = filter_tokens(token) |
|
whisper_tokens = filter_tokens(segment["tokens"]) |
|
if timestamped_tokens != whisper_tokens: |
|
if len(timestamped_tokens) == len(whisper_tokens) + 1: |
|
logger.warning(f"An additional token was added on segment {i}") |
|
elif WHIPSER_GE_20230306 and len(whisper_tokens) == 0: |
|
logger.warning(f"Whisper has empty segment {i}") |
|
assert segment["end"] == segment["start"], f"Fatal Error: Got empty segment {i} with non-zero duration" |
|
segment["tokens"] = timestamped_tokens |
|
segment["text"] = tokenizer.decode(timestamped_tokens) |
|
else: |
|
assert len(timestamped_tokens) < len(whisper_tokens) and timestamped_tokens == whisper_tokens[:len(timestamped_tokens)], \ |
|
f"Fatal Error: Got inconsistent text for segment {i}:\n({len(timestamped_tokens)})\n{tokenizer.decode_with_timestamps(timestamped_tokens)}\n{timestamped_tokens}\n!=\n({len(whisper_tokens)})\n{tokenizer.decode_with_timestamps(whisper_tokens)}\n{whisper_tokens[:len(timestamped_tokens)]}" |
|
segment["tokens"] = token if WHIPSER_GE_20230306 else timestamped_tokens |
|
segment["text"] = tokenizer.decode(segment["tokens"]) |
|
logger.warning(f"Text had to be shortned on segment {i}:\n{tokenizer.decode(timestamped_tokens)}\n!=\n{tokenizer.decode(whisper_tokens)}") |
|
timestamped_words[-1]["avg_logprob_reliable"] = False |
|
|
|
offset = segment["seek"] * HOP_LENGTH / SAMPLE_RATE |
|
for timestamped_word in timestamped_words: |
|
timestamped_word["start"] += offset |
|
timestamped_word["end"] += offset |
|
timestamped_word["idx_segment"] = i |
|
|
|
if compute_word_confidence: |
|
if "avg_logprob_reliable" not in timestamped_words[-1] or timestamped_words[-1]["avg_logprob_reliable"]: |
|
|
|
if abs(segment["avg_logprob"] - avglogprob) >= 1e-2: |
|
logger.warning(f"Recomputed different logprob for segment {i}: {avglogprob} != {segment['avg_logprob']}") |
|
if include_punctuation_in_confidence: |
|
segment["confidence"] = round_confidence(logprobs.mean().exp().item()) |
|
else: |
|
logprobs_nopunc = [] |
|
i_end = 0 |
|
for timestamped_word in timestamped_words: |
|
i_start = i_end |
|
tokens = timestamped_word["tokens"] |
|
i_end += len(tokens) |
|
|
|
assert i_end <= len(logprobs), f"Fatal Error: Got out-of-bound index for segment {i}: {i_end} > {len(logprobs)}" |
|
if include_punctuation_in_confidence: |
|
word_logprobs = logprobs[i_start:i_end] |
|
else: |
|
while len(tokens) > 1 and len(tokens[-1]) and tokens[-1][-1] in _punctuation: |
|
tokens = tokens[:-1] |
|
word_logprobs = logprobs[i_start:i_start + len(tokens)] |
|
logprobs_nopunc.append(word_logprobs) |
|
|
|
timestamped_word["confidence"] = round_confidence(word_logprobs.mean().exp().item() if len(word_logprobs) else 0.0) |
|
|
|
if i_end not in [len(logprobs), len(logprobs)-1]: |
|
logger.warning(f"Got inconsistent length for segment {i} ({len(logprobs)} != {i_end}). Some words have been ignored.") |
|
if not include_punctuation_in_confidence: |
|
logprobs_nopunc = torch.cat(logprobs_nopunc) |
|
segment["confidence"] = round_confidence(logprobs_nopunc.mean().exp().item()) |
|
|
|
words.extend(timestamped_words) |
|
|
|
if language_probs: |
|
transcription["language_probs"] = language_probs |
|
|
|
return transcription, words |
|
|
|
def _transcribe_timestamped_naive( |
|
model, |
|
audio, |
|
remove_punctuation_from_words, |
|
compute_word_confidence, |
|
include_punctuation_in_confidence, |
|
refine_whisper_precision_nframes, |
|
use_backend_timestamps, |
|
alignment_heads, |
|
plot_word_alignment, |
|
word_alignment_most_top_layers, |
|
detect_disfluencies, |
|
trust_whisper_timestamps, |
|
min_word_duration, |
|
**whisper_options, |
|
): |
|
verbose = whisper_options["verbose"] |
|
whisper_options["verbose"] = None if whisper_options["verbose"] is True else whisper_options["verbose"] |
|
language = whisper_options["language"] |
|
refine_whisper_precision_sec = refine_whisper_precision_nframes * AUDIO_TIME_PER_TOKEN |
|
|
|
word_alignment_most_top_layers = float("inf") if word_alignment_most_top_layers is None else word_alignment_most_top_layers |
|
|
|
audio = get_audio_tensor(audio) |
|
audio_duration = audio.shape[-1] / SAMPLE_RATE |
|
|
|
if verbose and language is None and not whisper_options["verbose"]: |
|
|
|
print("Detecting language using up to the first 30 seconds. Use `--language` to specify the language") |
|
|
|
tokenizer = get_tokenizer(model, task=whisper_options["task"], language=language) |
|
|
|
transformer_backend = is_transformer_model(model) |
|
if transformer_backend: |
|
|
|
whisper_options["remove_punctuation_from_words"] = remove_punctuation_from_words |
|
whisper_options["use_token_timestamps"] = use_backend_timestamps |
|
else: |
|
whisper_options["word_timestamps"] = use_backend_timestamps |
|
|
|
language_probs = None |
|
def hook_output_logits(layer, ins, outs): |
|
nonlocal language_probs, tokenizer |
|
|
|
|
|
if language is None and language_probs is None: |
|
if outs.shape[1] == 1: |
|
embedding_weights = torch.transpose(model.decoder.token_embedding.weight, 0, 1).to(outs[0].dtype) |
|
index_start = tokenizer.sot + 1 |
|
index_end = index_start + len(tokenizer.all_language_tokens) |
|
logits = (outs[0][0,:] @ embedding_weights).float() |
|
language_probs = logits[index_start:index_end].softmax(dim=-1) |
|
language_probs = dict(zip(whisper.tokenizer.LANGUAGES, language_probs.tolist())) |
|
else: |
|
language_probs = False |
|
|
|
all_hooks = [] |
|
if model.is_multilingual: |
|
all_hooks.append(model.decoder.ln.register_forward_hook(hook_output_logits)) |
|
|
|
try: |
|
model.alignment_heads = alignment_heads |
|
transcription = model.transcribe(audio, **whisper_options) |
|
finally: |
|
for hook in all_hooks: |
|
hook.remove() |
|
|
|
if not transformer_backend and verbose and language is None and not whisper_options["verbose"]: |
|
|
|
print(f"Detected language: {whisper.tokenizer.LANGUAGES[transcription['language']].title()}") |
|
sys.stdout.flush() |
|
|
|
|
|
if transcription.get("segments") and "words" in transcription["segments"][0]: |
|
words = [] |
|
for i_segment, segment in enumerate(transcription["segments"]): |
|
ws = segment.pop("words", []) |
|
for w in ws: |
|
|
|
if "word" in w: w["text"] = w.pop("word") |
|
if "probability" in w: w["confidence"] = round_confidence(w.pop("probability")) |
|
w["idx_segment"] = i_segment |
|
words.extend(ws) |
|
if language_probs: |
|
transcription["language_probs"] = language_probs |
|
return transcription, words |
|
|
|
language = norm_language(transcription.get("language", language)) |
|
use_space = should_use_space(language) |
|
|
|
n_mels = model.dims.n_mels if hasattr(model.dims, "n_mels") else 80 |
|
|
|
attention_weights = [[] for _ in range(min(word_alignment_most_top_layers, len(model.decoder.blocks)))] |
|
|
|
try: |
|
|
|
all_hooks = [] |
|
|
|
|
|
nblocks = len(model.decoder.blocks) |
|
j = 0 |
|
for i, block in enumerate(model.decoder.blocks): |
|
if i < nblocks - word_alignment_most_top_layers: |
|
continue |
|
def hook(layer, ins, outs, index=j): |
|
if is_transformer_model(model): |
|
attention_weights[index] = outs[1].log() |
|
else: |
|
attention_weights[index] = outs[1] |
|
all_hooks.append( |
|
block.cross_attn.register_forward_hook( |
|
hook |
|
|
|
) |
|
) |
|
j += 1 |
|
|
|
|
|
|
|
current_tokens = [] |
|
token_to_idx_segment = [] |
|
|
|
words = [] |
|
previous_end = 0 |
|
whisper_segments = transcription["segments"] |
|
for i_segment, segment in enumerate(whisper_segments): |
|
|
|
|
|
|
|
|
|
start = end = tokens = None |
|
if trust_whisper_timestamps: |
|
|
|
start = segment["start"] |
|
end = segment["end"] |
|
if end < start: |
|
|
|
end = min(audio_duration, start + SEGMENT_DURATION) |
|
|
|
start_margin_min = start - refine_whisper_precision_sec |
|
start_margin_max = start + refine_whisper_precision_sec |
|
if start >= audio_duration - min_word_duration or (previous_end >= start_margin_min and previous_end <= start_margin_max): |
|
|
|
start = previous_end |
|
else: |
|
|
|
start = start_margin_min |
|
|
|
if start > audio_duration - min_word_duration: |
|
|
|
logger.warning(f"Skipping segment outside of audio duration {audio_duration} (original: {segment['start']}-{segment['end']}, new: {start}-XXX)") |
|
continue |
|
|
|
end_margin_min = end - refine_whisper_precision_sec |
|
end_margin_max = end + refine_whisper_precision_sec |
|
if i_segment < len(whisper_segments) - 1: |
|
|
|
|
|
end_margin_max2 = whisper_segments[i_segment + 1]["start"] + refine_whisper_precision_sec - min_word_duration |
|
if end_margin_max2 >= end_margin_min: |
|
end_margin_max = min(end_margin_max2, end_margin_max) |
|
end = min(audio_duration, end_margin_max) |
|
|
|
if end < start + min_word_duration: |
|
logger.warning(f"Got super short segment (original from whisper: {segment['start']}-{segment['end']}, new: {start, end})") |
|
end = min(audio_duration, start + min_word_duration) |
|
if end <= start: |
|
logger.warning(f"Skipping this short segment occuring too close to the end of the audio") |
|
continue |
|
|
|
tokens = segment["tokens"] |
|
|
|
else: |
|
|
|
seek = segment["seek"] |
|
new_tokens = segment["tokens"] |
|
if not len(new_tokens): |
|
continue |
|
|
|
if new_tokens[0] < tokenizer.timestamp_begin: |
|
relative_start = segment["start"] - (seek * HOP_LENGTH / SAMPLE_RATE) |
|
start_token = round(relative_start * SAMPLE_RATE / AUDIO_SAMPLES_PER_TOKEN) + tokenizer.timestamp_begin |
|
new_tokens = [start_token] + new_tokens |
|
if new_tokens[-1] < tokenizer.timestamp_begin: |
|
relative_end = segment["end"] - (seek * HOP_LENGTH / SAMPLE_RATE) |
|
end_token = round(relative_end * SAMPLE_RATE / AUDIO_SAMPLES_PER_TOKEN) + tokenizer.timestamp_begin |
|
new_tokens = new_tokens + [end_token] |
|
|
|
current_tokens.extend(new_tokens) |
|
token_to_idx_segment.extend([i_segment] * len(new_tokens)) |
|
|
|
next_seek = whisper_segments[i_segment+1]["seek"] if i_segment < len(whisper_segments) - 1 else None |
|
if seek != next_seek: |
|
start = float(seek * HOP_LENGTH / SAMPLE_RATE) |
|
assert start < audio_duration, f"Got start {start} which is outside of audio duration {audio_duration}" |
|
end = min(start + SEGMENT_DURATION, audio_duration) |
|
tokens = current_tokens |
|
|
|
if tokens is None or not len(tokens): |
|
continue |
|
|
|
start_sample = min(round(start * SAMPLE_RATE), audio.shape[-1]) |
|
end_sample = min(round(end * SAMPLE_RATE), audio.shape[-1]) |
|
|
|
|
|
sub_audio = audio_minimum_padding(audio[start_sample:end_sample]) |
|
|
|
mfcc = whisper.log_mel_spectrogram(sub_audio, n_mels).to(model.device) |
|
mfcc = whisper.pad_or_trim(mfcc, N_FRAMES) |
|
mfcc = mfcc.unsqueeze(0) |
|
|
|
segment_tokens_check = [] |
|
if tokens[0] >= tokenizer.timestamp_begin: |
|
segment_tokens_check.append(tokens[0]) |
|
while tokens[0] >= tokenizer.timestamp_begin: |
|
tokens = tokens[1:] |
|
assert len(tokens), "Got transcription with only timestamps!" |
|
last_token_check = None |
|
while tokens[-1] >= tokenizer.timestamp_begin: |
|
last_token_check = tokens[-1] |
|
tokens = tokens[:-1] |
|
|
|
sot_sequence = tokenizer.sot_sequence |
|
if language and len(sot_sequence) == 3: |
|
sot_sequence = ( |
|
sot_sequence[0], |
|
tokenizer.to_language_token(language), |
|
sot_sequence[2], |
|
) |
|
tokens = [ |
|
*sot_sequence, |
|
tokenizer.timestamp_begin, |
|
] + tokens |
|
|
|
i_start = len(sot_sequence) |
|
|
|
with torch.no_grad(): |
|
logprobs = model(mfcc, torch.Tensor(tokens).int().to(model.device).unsqueeze(0)) |
|
logprobs = F.log_softmax(logprobs, dim=-1) |
|
|
|
end_token = tokenizer.timestamp_begin + round(min(N_FRAMES * HOP_LENGTH, end_sample - start_sample) // AUDIO_SAMPLES_PER_TOKEN) |
|
tokens = tokens[i_start:] + [end_token] |
|
attention_weights = [w[:, :, i_start-1:, :] for w in attention_weights] |
|
|
|
ws = perform_word_alignment( |
|
tokens, |
|
attention_weights, |
|
tokenizer, |
|
use_space=use_space, |
|
alignment_heads=alignment_heads, |
|
remove_punctuation_from_words=remove_punctuation_from_words, |
|
refine_whisper_precision_nframes=refine_whisper_precision_nframes, |
|
detect_disfluencies=detect_disfluencies, |
|
mfcc=mfcc, |
|
plot=plot_word_alignment, |
|
) |
|
|
|
segment_logprobs = [] |
|
i_token = 1 |
|
|
|
for word in ws: |
|
|
|
word["start"] = round(word["start"] + start, 2) |
|
word["end"] = round(word["end"] + start, 2) |
|
|
|
if trust_whisper_timestamps: |
|
word.update({"idx_segment": i_segment}) |
|
else: |
|
assert i_token < len(tokens) |
|
assert not len(word["tokens_indices"]) or word["tokens_indices"][0] == tokens[i_token] |
|
word.update({"idx_segment": token_to_idx_segment[i_token]}) |
|
i_token += len(word["tokens"]) |
|
while i_token < len(tokens) and tokens[i_token] >= tokenizer.timestamp_begin: |
|
i_token += 1 |
|
|
|
tok_indices = word["tokens_indices"] |
|
segment_tokens_check.extend(tok_indices) |
|
|
|
if compute_word_confidence: |
|
tok = word["tokens"] |
|
i_end = i_start + len(tok) |
|
if include_punctuation_in_confidence: |
|
while len(tok) > 1 and len(tok[-1]) and tok[-1][-1] in _punctuation: |
|
tok = tok[:-1] |
|
tok_indices = tok_indices[:-1] |
|
word_logprobs = [logprobs[:, step, tok] for (step, tok) in zip(range(i_start, i_start + len(tok_indices)), tok_indices)] |
|
i_start = i_end |
|
if len(word_logprobs): |
|
word_logprobs = torch.cat(word_logprobs) |
|
segment_logprobs.append(word_logprobs) |
|
word_confidence = word_logprobs.mean().exp().item() |
|
else: |
|
word_confidence = 0 |
|
word.update({"confidence": round_confidence(word_confidence)}) |
|
|
|
words.append(word) |
|
|
|
if verbose: |
|
print_timestamped(word) |
|
|
|
if last_token_check is not None: |
|
segment_tokens_check.append(last_token_check) |
|
if trust_whisper_timestamps: |
|
if segment_tokens_check != segment["tokens"]: |
|
assert len(segment_tokens_check) < len(segment["tokens"]), \ |
|
f"First should be longer by one token: '{tokenizer.decode_with_timestamps(segment_tokens_check)}' should include '{tokenizer.decode_with_timestamps(segment['tokens'])}'" |
|
assert segment_tokens_check[:-1] == segment["tokens"][:len(segment_tokens_check)-1], \ |
|
f"Got inconsistent tokens: {tokenizer.decode_with_timestamps(segment_tokens_check)} != {tokenizer.decode_with_timestamps(segment['tokens'])}" |
|
segment["tokens"] = segment_tokens_check |
|
segment["text"] = tokenizer.decode(segment["tokens"]) |
|
|
|
|
|
if len(segment_logprobs): |
|
segment.update({"confidence": round_confidence(torch.cat(segment_logprobs).mean().exp().item())}) |
|
|
|
if len(ws): |
|
previous_end = ws[-1]["end"] |
|
|
|
if not trust_whisper_timestamps: |
|
current_tokens = [] |
|
token_to_idx_segment = [] |
|
|
|
finally: |
|
|
|
|
|
for hook in all_hooks: |
|
hook.remove() |
|
|
|
if language_probs: |
|
transcription["language_probs"] = language_probs |
|
|
|
return (transcription, words) |
|
|
|
def get_audio_tensor(audio, device="cpu"): |
|
if isinstance(audio, str): |
|
audio = whisper.load_audio(audio) |
|
if isinstance(audio, np.ndarray): |
|
audio = torch.Tensor(audio) |
|
else: |
|
assert isinstance(audio, torch.Tensor), f"Got unexpected audio of type {type(audio)}" |
|
return audio.to(device) |
|
|
|
def audio_minimum_padding(audio): |
|
if audio.shape[-1] <= 200: |
|
return whisper.pad_or_trim(audio, 201) |
|
return audio |
|
|
|
|
|
def should_use_space(language): |
|
return norm_language(language) not in ["zh", "ja", "th", "lo", "my", "yue"] |
|
|
|
def norm_language(language): |
|
if language is None: |
|
return "en" |
|
return whisper.tokenizer.TO_LANGUAGE_CODE.get(language.lower(), language) |
|
|
|
def print_timestamped(w): |
|
line = f"[{format_timestamp(w['start'])} --> {format_timestamp(w['end'])}] {w['text']}\n" |
|
|
|
|
|
sys.stdout.write(line.encode(sys.getdefaultencoding(), errors="replace").decode()) |
|
sys.stdout.flush() |
|
|
|
|
|
def get_logit_filters(model, whisper_options, prompt = None): |
|
if is_transformer_model(model): |
|
|
|
|
|
raise NotImplementedError("TODO") |
|
decoding_options = get_decoding_options(whisper_options) |
|
if "initial_prompt" in decoding_options: |
|
prompt0 = decoding_options.pop("initial_prompt") |
|
if prompt is None: |
|
prompt = prompt0 |
|
if prompt is not None: |
|
decoding_options["prompt"] = prompt |
|
decoding_options = whisper.DecodingOptions( |
|
without_timestamps=False, |
|
max_initial_timestamp=1.0, |
|
prefix=None, |
|
suppress_blank=True, |
|
**decoding_options |
|
) |
|
|
|
|
|
decoding_task = whisper.decoding.DecodingTask(model, decoding_options) |
|
return decoding_task.logit_filters |
|
|
|
def get_decoding_options(whisper_options): |
|
return dict([(k,v) for (k,v) in whisper_options.items() |
|
if k not in [ |
|
"no_speech_threshold", |
|
"logprob_threshold", |
|
"compression_ratio_threshold", |
|
"condition_on_previous_text", |
|
"verbose", |
|
] |
|
]) |
|
|
|
def get_tokenizer(model, task="transcribe", language="en"): |
|
if is_transformer_model(model): |
|
tokenizer = model.tokenizer |
|
tokenizer.sot_sequence = ( |
|
tokenizer.sot, |
|
tokenizer.to_language_token(language or "en"), |
|
tokenizer.to_task_token(task), |
|
) |
|
tokenizer.sot_sequence |
|
return model.tokenizer |
|
try: |
|
return whisper.tokenizer.get_tokenizer( |
|
model.is_multilingual, |
|
num_languages=model.num_languages if hasattr(model, "num_languages") else 99, |
|
task=task, language=language |
|
) |
|
except TypeError: |
|
return whisper.tokenizer.get_tokenizer( |
|
model.is_multilingual, |
|
task=task, language=language |
|
) |
|
|
|
def perform_word_alignment( |
|
tokens, |
|
attention_weights, |
|
tokenizer, |
|
use_space=True, |
|
mfcc=None, |
|
refine_whisper_precision_nframes=0, |
|
remove_punctuation_from_words=False, |
|
include_punctuation_in_timing=False, |
|
unfinished_decoding=False, |
|
alignment_heads=None, |
|
medfilt_width=9, |
|
qk_scale=1.0, |
|
detect_disfluencies=True, |
|
subwords_can_be_empty=True, |
|
plot=False, |
|
debug=False, |
|
): |
|
""" |
|
Perform word alignment on the given tokens and attention weights. |
|
Returns a list of (word, start_time, end_time) tuples. |
|
|
|
tokens: list of tokens (integers) |
|
attention_weights: list of attention weights (torch tensors) |
|
tokenizer: tokenizer used to tokenize the text |
|
use_space: whether to use spaces to split the tokens into words (should be true for all languages except Japanese, Chinese, ...) |
|
mfcc: MFCC features (used to identify padded region, and for plotting) |
|
refine_whisper_precision_nframes: precision time |
|
remove_punctuation_from_words: whether to remove punctuation from words |
|
include_punctuation_in_timing: whether to include punctuation in the timing of (previous) words |
|
unfinished_decoding: whether the decoding is unfinished (e.g. because the model is stuck) |
|
alignment_heads: list of attention heads to use for alignment |
|
medfilt_width: width of the median filter used to smooth the attention weights |
|
qk_scale: scale factor applied to the attention weights |
|
plot: whether to plot the word alignment |
|
debug: whether to print debug information |
|
""" |
|
|
|
assert len(tokens) > 1, f"Got unexpected sequence of tokens of length {len(tokens)} {tokenizer.decode_with_timestamps(tokens)}" |
|
start_token = tokens[0] - tokenizer.timestamp_begin |
|
end_token = tokens[-1] - tokenizer.timestamp_begin |
|
|
|
|
|
if start_token < 0: |
|
raise RuntimeError(f"Missing start token in: {tokenizer.decode_with_timestamps(tokens)}") |
|
if len(tokens) == 1 or end_token < 0: |
|
|
|
if debug: |
|
logger.debug(f"Missing end token in {tokenizer.decode_with_timestamps(tokens)}") |
|
end_token = N_FRAMES // 2 |
|
if end_token == start_token and refine_whisper_precision_nframes == 0: |
|
if debug: |
|
logger.debug(f"Got empty segment in {tokenizer.decode_with_timestamps(tokens)}") |
|
return [] |
|
|
|
|
|
end_token = min(N_FRAMES // 2, max(end_token, start_token + len(tokens))) |
|
|
|
|
|
if refine_whisper_precision_nframes > 0: |
|
start_token = max(start_token - refine_whisper_precision_nframes, 0) |
|
end_token = min(end_token + refine_whisper_precision_nframes, N_FRAMES // 2) |
|
|
|
if end_token <= start_token: |
|
raise RuntimeError(f"Got segment with null or negative duration {tokenizer.decode_with_timestamps(tokens)}: {start_token} {end_token}") |
|
|
|
start_time = start_token * AUDIO_TIME_PER_TOKEN |
|
|
|
|
|
split_tokens = split_tokens_on_spaces if use_space else split_tokens_on_unicode |
|
words, word_tokens, word_tokens_indices = split_tokens(tokens, tokenizer, remove_punctuation_from_words=remove_punctuation_from_words) |
|
|
|
|
|
|
|
|
|
num_punctuations_per_tokens = [ |
|
0 if len(w) == 1 or w[-1] not in _punctuation else 1 |
|
for w in word_tokens |
|
] |
|
if include_punctuation_in_timing: |
|
num_punctuations_per_tokens[:-2]=[0]*(len(num_punctuations_per_tokens)-2) |
|
|
|
for i, w in enumerate(attention_weights): |
|
assert w.shape[-2] == len(tokens), f"Attention weights have wrong shape: {w.shape[-2]} (expected {len(tokens)})." |
|
weights = torch.cat(attention_weights) |
|
|
|
num_tokens = weights.shape[-2] |
|
num_frames = end_token - start_token |
|
if num_tokens > num_frames: |
|
logger.warning(f"Too much text ({num_tokens} tokens) for the given number of frames ({num_frames}) in: {tokenizer.decode_with_timestamps(tokens)}\nThe end of the text will be removed.") |
|
return perform_word_alignment( |
|
tokens[:num_frames-1] + [tokens[-1]], |
|
[torch.cat([w[:, :, :num_frames-1, :], w[:, :, -1:, :]], dim=-2) |
|
for w in attention_weights], |
|
tokenizer, |
|
use_space=use_space, |
|
refine_whisper_precision_nframes=refine_whisper_precision_nframes, |
|
medfilt_width=medfilt_width, |
|
qk_scale=qk_scale, |
|
alignment_heads=alignment_heads, |
|
mfcc=mfcc, |
|
plot=plot, |
|
remove_punctuation_from_words=remove_punctuation_from_words, |
|
detect_disfluencies=detect_disfluencies, |
|
subwords_can_be_empty=subwords_can_be_empty, |
|
unfinished_decoding=True, |
|
debug=debug, |
|
) |
|
|
|
assert end_token <= weights.shape[-1] |
|
assert len(tokens) == num_tokens |
|
|
|
weights = weights[..., start_token: end_token].cpu() |
|
|
|
if alignment_heads is None: |
|
weights = weights.reshape(-1, *weights.shape[-2:]) |
|
else: |
|
weights = torch.stack([weights[l][h] for l, h in alignment_heads.indices().T]) |
|
weights = median_filter(weights, (1, 1, medfilt_width)) |
|
weights = torch.tensor(weights * qk_scale).softmax(dim=-1) |
|
weights = weights.mean(axis=(0)) |
|
weights = weights / weights.norm(dim=-2, keepdim=True) |
|
weights = -weights.double().numpy() |
|
worse_weight = 0 |
|
|
|
|
|
max_duration = None |
|
if mfcc is not None: |
|
max_duration = find_start_padding(mfcc) |
|
if max_duration is not None: |
|
max_duration = max_duration // 2 |
|
|
|
|
|
if max_duration: |
|
if start_token >= max_duration: |
|
logger.warning(f"Got start time outside of audio boundary") |
|
else: |
|
weights[:-1, max_duration:] = worse_weight |
|
|
|
|
|
weights[0, 0] = weights.min() |
|
|
|
|
|
if subwords_can_be_empty: |
|
step_pattern = dtw.stepPattern.symmetric1 |
|
else: |
|
|
|
step_pattern = dtw.stepPattern.StepPattern(dtw.stepPattern._c( |
|
1, 1, 1, -1, |
|
1, 0, 0, 1, |
|
2, 0, 1, -1, |
|
2, 0, 0, 1, |
|
)) |
|
alignment = dtw.dtw(weights, step_pattern=step_pattern) |
|
|
|
global num_alignment_for_plot |
|
num_alignment_for_plot += 1 |
|
|
|
if plot: |
|
import matplotlib.pyplot as plt |
|
import matplotlib.ticker as ticker |
|
|
|
plot_mfcc = 1 if mfcc is not None else 0 |
|
plot_disfluencies = 1 if detect_disfluencies else 0 |
|
nplots = (1 + plot_mfcc + plot_disfluencies) |
|
|
|
plt.subplots(nplots, 1, figsize=(16, 9), gridspec_kw={'height_ratios': [3] + [1] * (nplots - 1)}) |
|
plt.subplot(nplots, 1, 1, frameon=False) |
|
|
|
plt.imshow(-weights, aspect="auto") |
|
plt.plot(alignment.index2s, alignment.index1s, color="red") |
|
|
|
xticks = np.arange(0, weights.shape[1], 1 / AUDIO_TIME_PER_TOKEN) |
|
xticklabels = [round_timestamp(x) for x in xticks * AUDIO_TIME_PER_TOKEN + start_time] |
|
|
|
ylims = plt.gca().get_ylim() |
|
|
|
ax = plt.gca() |
|
ax.tick_params('both', length=0, width=0, which='minor', pad=6) |
|
|
|
ax.yaxis.set_ticks_position("left") |
|
ax.yaxis.set_label_position("left") |
|
ax.invert_yaxis() |
|
ax.set_ylim(ylims) |
|
|
|
major_ticks = [-0.5] |
|
minor_ticks = [] |
|
current_y = 0 |
|
|
|
for word, word_token in zip(words, word_tokens): |
|
minor_ticks.append(current_y + len(word_token) / 2 - 0.5) |
|
current_y += len(word_token) |
|
major_ticks.append(current_y - 0.5) |
|
|
|
words_with_subwords = ["|".join(s).strip() for (w, s) in zip(words, word_tokens)] |
|
|
|
ax.yaxis.set_minor_locator(ticker.FixedLocator(minor_ticks)) |
|
ax.yaxis.set_minor_formatter( |
|
ticker.FixedFormatter(words_with_subwords)) |
|
ax.set_yticks(major_ticks) |
|
ax.yaxis.set_major_formatter(ticker.NullFormatter()) |
|
for y in major_ticks: |
|
plt.axhline(y, color="black", linestyle="dashed") |
|
|
|
plt.ylabel("Words") |
|
|
|
if plot_mfcc: |
|
plt.xticks(xticks) |
|
plt.setp(plt.gca().get_xticklabels(), visible=False) |
|
|
|
xticks *= 2 |
|
|
|
plt.subplot(nplots, 1, 2, frameon=False) |
|
plt.imshow(mfcc[0, :, start_token * 2: end_token * 2].cpu(), aspect="auto", origin="lower") |
|
plt.yticks([]) |
|
plt.ylabel("MFCC") |
|
|
|
plt.xticks(xticks, xticklabels) |
|
plt.xlabel("Time (s)") |
|
|
|
jumps = np.diff(alignment.index1s) |
|
jumps = np.pad(jumps, (1, 0), constant_values=1) |
|
jumps = jumps.astype(bool) |
|
jumps = alignment.index2s[jumps] |
|
jumps = np.pad(jumps, (0, 1), constant_values=alignment.index2s[-1]) |
|
|
|
jumps_start = jumps |
|
disfluences = {} |
|
if detect_disfluencies: |
|
jumps_start = copy.copy(jumps) |
|
|
|
for (i_token, (tok, begin, end)) in enumerate(zip(tokens, jumps[:-1], jumps[1:])): |
|
|
|
|
|
attention_weights = -weights[i_token, begin:end] |
|
peaks, properties = find_peaks(attention_weights, |
|
width=3, |
|
prominence=0.02, |
|
) |
|
|
|
if len(peaks) > 1: |
|
if "left_ips" in properties: |
|
left = [round(x) for x in properties["left_ips"]] |
|
else: |
|
left = properties["left_bases"] |
|
|
|
new_begin = left[-1] + begin |
|
|
|
jumps_start[i_token] = new_begin |
|
|
|
if new_begin != begin: |
|
is_punctuation = tokenizer.decode_with_timestamps([tok]) in _punctuation |
|
if not is_punctuation: |
|
disfluences[i_token] = (begin, jumps_start[i_token]) |
|
else: |
|
disfluences[i_token+1] = (begin, end) |
|
|
|
if plot: |
|
plt.subplot(nplots, 1, 2 + plot_mfcc, frameon=False) |
|
plt.plot(range(begin,end), attention_weights) |
|
plt.xlim(0, end) |
|
|
|
for i, p in enumerate(peaks): |
|
color = 'red' if (len(peaks)>1 and i<len(peaks)-1) else 'green' |
|
plt.vlines(begin+p, 0, 1, color=color, linestyle="--") |
|
|
|
if "left_bases" in properties: |
|
def barxxy(start, end, y, **kwargs): |
|
middle = (start + end) / 2 |
|
plt.bar(middle, y, width=end-start, **kwargs) |
|
color = 'red' if len(peaks)>1 else 'green' |
|
barxxy(begin+properties["left_bases"], begin+properties["right_bases"], properties.get("prominences",[1]*len(properties["left_bases"])), alpha=0.5, |
|
|
|
linewidth=1, edgecolor=color |
|
) |
|
if "left_ips" in properties: |
|
for left in properties["left_ips"]: |
|
plt.vlines(begin+left, 0, 0.5, color='green', linestyle=':') |
|
for right in properties["right_ips"]: |
|
plt.vlines(begin+right, 0, 0.5, color='red', linestyle=':') |
|
|
|
|
|
|
|
word_boundaries = np.cumsum([len(t) for t in word_tokens]) |
|
word_boundaries = np.pad(word_boundaries, (1, 0)) |
|
begin_times = jumps_start[word_boundaries[:-1]] |
|
end_times = jumps[word_boundaries[1:] - num_punctuations_per_tokens] |
|
|
|
begin_times = begin_times * AUDIO_TIME_PER_TOKEN |
|
end_times = end_times * AUDIO_TIME_PER_TOKEN |
|
|
|
if detect_disfluencies: |
|
to_be_added = [] |
|
i_start = 0 |
|
for i_word, toks in enumerate(word_tokens[:-1]): |
|
i_end = i_start + len(toks) |
|
if i_start in disfluences and i_word > 0: |
|
begin, end = disfluences[i_start] |
|
begin *= AUDIO_TIME_PER_TOKEN |
|
end *= AUDIO_TIME_PER_TOKEN |
|
to_be_added.append((i_word, begin, end)) |
|
i_start = i_end |
|
|
|
for (i_word, begin, end) in to_be_added[-1::-1]: |
|
words.insert(i_word, DISFLUENCY_MARK) |
|
word_tokens.insert(i_word, []) |
|
word_tokens_indices.insert(i_word, []) |
|
begin_times = np.insert(begin_times, i_word, begin) |
|
end_times = np.insert(end_times, i_word, end) |
|
|
|
|
|
if not refine_whisper_precision_nframes: |
|
begin_times[1] = begin_times[0] |
|
if not refine_whisper_precision_nframes: |
|
end_times[-2] = end_times[-1] |
|
if unfinished_decoding: |
|
words = words[1:] |
|
word_tokens = word_tokens[1:] |
|
word_tokens_indices = word_tokens_indices[1:] |
|
begin_times = begin_times[1:] |
|
end_times = end_times[1:] |
|
else: |
|
words = words[1:-1] |
|
word_tokens = word_tokens[1:-1] |
|
word_tokens_indices = word_tokens_indices[1:-1] |
|
begin_times = begin_times[1:-1] |
|
end_times = end_times[1:-1] |
|
|
|
if plot: |
|
ymin = 1 |
|
|
|
plt.subplot(nplots, 1, 1) |
|
for i, (w, ws, begin, end) in enumerate(zip(words, word_tokens, begin_times, end_times)): |
|
ymax = ymin + len(ws) |
|
if mfcc is None: |
|
plt.text(begin / AUDIO_TIME_PER_TOKEN, num_tokens-0.5, w, ha="left", va="top", color="red") |
|
for x in [begin, end,]: |
|
plt.axvline(x / AUDIO_TIME_PER_TOKEN, color="red", linestyle="dotted", |
|
ymin=1-ymin/num_tokens, |
|
ymax=0, |
|
) |
|
ymin = ymax |
|
|
|
if plot_mfcc: |
|
plt.subplot(nplots, 1, 2) |
|
for i, (w, begin, end) in enumerate(zip(words, begin_times, end_times)): |
|
plt.text(begin * 2 / AUDIO_TIME_PER_TOKEN, mfcc.shape[-2]*1.05, w, ha="left", va="bottom", color="red") |
|
for x in [begin, end,]: |
|
plt.axvline(x * 2 / AUDIO_TIME_PER_TOKEN, color="red", linestyle="dotted") |
|
|
|
if isinstance(plot, str): |
|
plt.savefig(f"{plot}.alignment{num_alignment_for_plot:03d}.jpg", bbox_inches='tight', pad_inches=0) |
|
else: |
|
plt.show() |
|
|
|
return [ |
|
dict( |
|
text=word, |
|
start=round_timestamp(begin + start_time), |
|
end=round_timestamp(end + start_time), |
|
tokens=tokens, |
|
tokens_indices=tokens_indices, |
|
) |
|
for word, begin, end, tokens, tokens_indices in zip(words, begin_times, end_times, word_tokens, word_tokens_indices) |
|
if not word.startswith("<|") |
|
] |
|
|
|
def find_start_padding(mfcc): |
|
""" Return start of padding given the mfcc, or None if there is no padding """ |
|
last_mfcc = mfcc[0, :, -1] |
|
if torch.min(last_mfcc) == torch.max(last_mfcc) == 0: |
|
candidate_index = mfcc.shape[-1] - 2 |
|
while candidate_index > 0: |
|
candidate = mfcc[0, :, candidate_index] |
|
if not torch.equal(candidate, last_mfcc): |
|
return candidate_index + 1 |
|
candidate_index -= 1 |
|
return 0 |
|
|
|
def round_confidence(x): |
|
return round(x, 3) |
|
|
|
def round_timestamp(x): |
|
return round(x, 2) |
|
|
|
_punctuation = "".join(c for c in string.punctuation if c not in ["-", "'"]) + "。,!?:”、…" |
|
|
|
def split_tokens_on_unicode(tokens: list, tokenizer, remove_punctuation_from_words=False, isolate_punctuations=False): |
|
words = [] |
|
word_tokens = [] |
|
word_tokens_indices = [] |
|
current_tokens = [] |
|
|
|
for token in tokens: |
|
current_tokens.append(token) |
|
decoded = tokenizer.decode_with_timestamps([t for t in current_tokens if t < tokenizer.eot or t >= tokenizer.timestamp_begin]) |
|
if "\ufffd" not in decoded: |
|
empty_tokens = [""] * (len(current_tokens)-1) |
|
punctuation = not isolate_punctuations and (decoded.strip() and decoded.strip() in _punctuation) |
|
previous_special = len(word_tokens_indices) > 0 and (word_tokens_indices[-1][-1] >= tokenizer.timestamp_begin) |
|
if punctuation and not previous_special: |
|
if len(words) == 0: |
|
words = [""] |
|
word_tokens = [[]] |
|
if not remove_punctuation_from_words: |
|
words[-1] += decoded |
|
word_tokens[-1].extend(empty_tokens + [decoded]) |
|
word_tokens_indices[-1].extend(current_tokens) |
|
else: |
|
words.append(decoded) |
|
word_tokens.append(empty_tokens + [decoded]) |
|
word_tokens_indices.append(current_tokens) |
|
current_tokens = [] |
|
|
|
return words, word_tokens, word_tokens_indices |
|
|
|
|
|
def split_tokens_on_spaces(tokens: torch.Tensor, tokenizer, remove_punctuation_from_words=False): |
|
subwords, subword_tokens_list, subword_tokens_indices_list = split_tokens_on_unicode(tokens, tokenizer, remove_punctuation_from_words=remove_punctuation_from_words) |
|
words = [] |
|
word_tokens = [] |
|
word_tokens_indices = [] |
|
|
|
for i, (subword, subword_tokens, subword_tokens_indices) in enumerate(zip(subwords, subword_tokens_list, subword_tokens_indices_list)): |
|
special = (subword_tokens_indices[0] >= tokenizer.timestamp_begin) |
|
previous_special = (i > 0) and (subword_tokens_indices_list[i-1][0] >= tokenizer.timestamp_begin) |
|
next_special = (i < len(subword_tokens_indices_list)-1) and (subword_tokens_indices_list[i+1][0] >= tokenizer.timestamp_begin) |
|
previous_space = (i > 0) and (not subwords[i-1].strip()) |
|
is_space = not subword.strip() |
|
with_space = subword.startswith(" ") and not is_space |
|
punctuation = not is_space and subword.strip() in _punctuation |
|
if special or (not previous_space and (previous_special or (with_space and not punctuation) or (is_space and not next_special))): |
|
words.append(subword.strip()) |
|
word_tokens.append(subword_tokens) |
|
word_tokens_indices.append(subword_tokens_indices) |
|
else: |
|
words[-1] = words[-1] + subword.strip() |
|
word_tokens[-1].extend(subword_tokens) |
|
word_tokens_indices[-1].extend(subword_tokens_indices) |
|
|
|
return words, word_tokens, word_tokens_indices |
|
|
|
def check_vad_method(method, with_version=False): |
|
""" |
|
Check whether the VAD method is valid and return the method in a consistent format |
|
|
|
method: str or list or True or False |
|
""" |
|
if method in [True, "True", "true"]: |
|
return check_vad_method("silero") |
|
elif method in [None, False, "False", "false", "None", "none"]: |
|
return None |
|
elif not isinstance(method, str) and hasattr(method, '__iter__'): |
|
|
|
checked_pairs = [] |
|
for s_e in method: |
|
assert len(s_e) == 2, f"Got unexpected element {s_e} in the list of VAD segments. Expect (start, end) pairs" |
|
checked_pairs.append(tuple(s_e)) |
|
return checked_pairs |
|
elif isinstance(method, str) and method.startswith("silero"): |
|
version = None |
|
if method != "silero": |
|
assert method.startswith("silero:"), f"Got unexpected VAD method {method}" |
|
version = method.split(":")[1] |
|
if not version.startswith("v"): |
|
version = "v" + version |
|
try: |
|
assert float(version[1:]) >= 1 |
|
except: |
|
raise ValueError(f"Got unexpected silero version {version} (please check https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models)") |
|
if with_version: |
|
return ("silero", version) |
|
else: |
|
return method |
|
elif method == "auditok": |
|
try: |
|
import auditok |
|
except ImportError: |
|
raise ImportError("Please install auditok to use the auditok VAD (or use another VAD method)") |
|
else: |
|
try: |
|
method = eval(method) |
|
assert hasattr(method, '__iter__') |
|
except: |
|
raise ValueError(f"Got unexpected VAD method {method}") |
|
return check_vad_method(method, with_version=with_version) |
|
return method |
|
|
|
_silero_vad_model = {} |
|
_has_onnx = None |
|
def get_vad_segments(audio, |
|
sample_rate=SAMPLE_RATE, |
|
output_sample=False, |
|
min_speech_duration=0.1, |
|
min_silence_duration=0.1, |
|
dilatation=0.5, |
|
method="silero", |
|
): |
|
""" |
|
Get speech segments from audio using Silero VAD |
|
parameters: |
|
audio: torch.Tensor |
|
audio data *in 16kHz* |
|
output_sample: bool |
|
if True, return start and end in samples instead of seconds |
|
min_speech_duration: float |
|
minimum duration (in sec) of a speech segment |
|
min_silence_duration: float |
|
minimum duration (in sec) of a silence segment |
|
dilatation: float |
|
how much (in sec) to enlarge each speech segment detected by the VAD |
|
method: str or list |
|
VAD method to use (auditok, silero, silero:v3.1) |
|
""" |
|
global _silero_vad_model, _silero_get_speech_ts, _has_onnx |
|
|
|
if isinstance(method, list): |
|
|
|
segments = [{"start": s * sample_rate, "end": e * sample_rate} for (s, e) in method] |
|
dilatation = 0 |
|
|
|
elif isinstance(method, str) and method.startswith("silero"): |
|
|
|
version = None |
|
_, version = check_vad_method(method, True) |
|
|
|
need_folder_hack = version and (version < "v4") |
|
|
|
if _silero_vad_model.get(version) is None: |
|
|
|
if (version is None or version >= "v3.1") and (_has_onnx is not False): |
|
onnx=True |
|
try: |
|
import onnxruntime |
|
onnxruntime.set_default_logger_severity(3) |
|
_has_onnx = True |
|
except ImportError as err: |
|
logger.warning(f"Please install onnxruntime to use more efficiently silero VAD") |
|
_has_onnx = False |
|
onnx=False |
|
else: |
|
onnx=False |
|
|
|
|
|
torch_home = os.environ.get('TORCH_HOME', '~/.cache/torch') |
|
repo_or_dir_master = os.path.expanduser(torch_home + "/hub/snakers4_silero-vad_master") |
|
repo_or_dir_specific = os.path.expanduser(torch_home + f"/hub/snakers4_silero-vad_{version}") if version else repo_or_dir_master |
|
repo_or_dir = repo_or_dir_specific |
|
tmp_folder = None |
|
def apply_folder_hack(): |
|
nonlocal tmp_folder |
|
if os.path.exists(repo_or_dir_master): |
|
tmp_folder = repo_or_dir_master + ".tmp" |
|
shutil.move(repo_or_dir_master, tmp_folder) |
|
|
|
input_exists = os.path.exists(repo_or_dir_specific) |
|
if not input_exists: |
|
|
|
os.makedirs(repo_or_dir_specific, exist_ok=True) |
|
os.symlink(repo_or_dir_specific, repo_or_dir_master) |
|
if not input_exists: |
|
shutil.rmtree(repo_or_dir_specific) |
|
|
|
source = "local" |
|
if not os.path.exists(repo_or_dir): |
|
|
|
repo_or_dir = f"snakers4/silero-vad:{version}" if version else "snakers4/silero-vad" |
|
source = "github" |
|
if need_folder_hack: |
|
apply_folder_hack() |
|
try: |
|
silero_vad_model, utils = torch.hub.load(repo_or_dir=repo_or_dir, model="silero_vad", onnx=onnx, source=source) |
|
_silero_vad_model[version] = silero_vad_model |
|
except ImportError as err: |
|
raise RuntimeError(f"Please install what is needed to use the silero VAD (or use another VAD method)") from err |
|
except Exception as err: |
|
raise RuntimeError(f"Problem when installing silero with version {version}. Check versions here: https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models") from err |
|
finally: |
|
if need_folder_hack: |
|
if os.path.exists(repo_or_dir_master): |
|
os.remove(repo_or_dir_master) |
|
if tmp_folder: |
|
shutil.move(tmp_folder, repo_or_dir_master) |
|
assert os.path.isdir(repo_or_dir_specific), f"Unexpected situation: missing {repo_or_dir_specific}" |
|
|
|
_silero_get_speech_ts = utils[0] |
|
|
|
|
|
audio = audio / max(0.1, audio.abs().max()) |
|
|
|
segments = _silero_get_speech_ts(audio, _silero_vad_model[version], |
|
sampling_rate = sample_rate, |
|
min_speech_duration_ms = round(min_speech_duration * 1000), |
|
min_silence_duration_ms = round(min_silence_duration * 1000), |
|
return_seconds = False, |
|
) |
|
|
|
elif method == "auditok": |
|
import auditok |
|
|
|
|
|
audio = audio / max(0.1, audio.abs().max()) |
|
|
|
data = (audio.numpy() * 32767).astype(np.int16).tobytes() |
|
|
|
audio_duration = len(audio) / sample_rate |
|
|
|
segments = auditok.split( |
|
data, |
|
sampling_rate=sample_rate, |
|
channels=1, |
|
sample_width=2, |
|
min_dur=min_speech_duration, |
|
max_dur=audio_duration, |
|
max_silence=min(audio_duration*.95, min_silence_duration), |
|
energy_threshold=50, |
|
drop_trailing_silence=True, |
|
) |
|
|
|
segments = [{"start": s._meta.start * sample_rate, "end": s._meta.end * sample_rate} for s in segments] |
|
|
|
else: |
|
raise ValueError(f"Got unexpected VAD method {method}") |
|
|
|
if dilatation > 0: |
|
dilatation = round(dilatation * sample_rate) |
|
new_segments = [] |
|
for seg in segments: |
|
new_seg = { |
|
"start": max(0, seg["start"] - dilatation), |
|
"end": min(len(audio), seg["end"] + dilatation) |
|
} |
|
if len(new_segments) > 0 and new_segments[-1]["end"] >= new_seg["start"]: |
|
new_segments[-1]["end"] = new_seg["end"] |
|
else: |
|
new_segments.append(new_seg) |
|
segments = new_segments |
|
|
|
ratio = 1 if output_sample else 1 / sample_rate |
|
|
|
if ratio != 1: |
|
for seg in segments: |
|
seg["start"] *= ratio |
|
seg["end"] *= ratio |
|
if output_sample: |
|
for seg in segments: |
|
seg["start"] = round(seg["start"]) |
|
seg["end"] = round(seg["end"]) |
|
return segments |
|
|
|
def remove_non_speech(audio, |
|
use_sample=False, |
|
min_speech_duration=0.1, |
|
min_silence_duration=1, |
|
dilatation=0.5, |
|
sample_rate=SAMPLE_RATE, |
|
method="silero", |
|
avoid_empty_speech=False, |
|
plot=False, |
|
): |
|
""" |
|
Remove non-speech segments from audio (using Silero VAD), |
|
glue the speech segments together and return the result along with |
|
a function to convert timestamps from the new audio to the original audio |
|
|
|
parameters: |
|
audio: torch.Tensor |
|
audio data *in 16kHz* |
|
use_sample: bool |
|
if True, return start and end in samples instead of seconds |
|
min_speech_duration: float |
|
minimum duration (in sec) of a speech segment |
|
min_silence_duration: float |
|
minimum duration (in sec) of a silence segment |
|
dilatation: float |
|
how much (in sec) to enlarge each speech segment detected by the VAD |
|
method: str |
|
method to use to remove non-speech segments |
|
avoid_empty_speech: bool |
|
if True, avoid returning an empty speech segment (re) |
|
plot: bool or str |
|
if True, plot the result. |
|
If a string, save the plot to the given file |
|
""" |
|
|
|
segments = get_vad_segments( |
|
audio, |
|
sample_rate=sample_rate, |
|
output_sample=True, |
|
min_speech_duration=min_speech_duration, |
|
min_silence_duration=min_silence_duration, |
|
dilatation=dilatation, |
|
method=method, |
|
) |
|
|
|
segments = [(seg["start"], seg["end"]) for seg in segments] |
|
if len(segments) == 0: |
|
if avoid_empty_speech: |
|
segments = [(0, audio.shape[-1])] |
|
else: |
|
return torch.Tensor([]), [], lambda t, t2 = None: t if t2 is None else [t, t2] |
|
|
|
audio_speech = torch.cat([audio[..., s:e] for s,e in segments], dim=-1) |
|
|
|
if plot: |
|
import matplotlib.pyplot as plt |
|
plt.figure() |
|
max_num_samples = 10000 |
|
step = (audio.shape[-1] // max_num_samples) + 1 |
|
times = [i*step/sample_rate for i in range((audio.shape[-1]-1) // step + 1)] |
|
plt.plot(times, audio[::step]) |
|
for s, e in segments: |
|
plt.axvspan(s/sample_rate, e/sample_rate, color='red', alpha=0.1) |
|
if isinstance(plot, str): |
|
plt.savefig(f"{plot}.VAD.jpg", bbox_inches='tight', pad_inches=0) |
|
else: |
|
plt.show() |
|
|
|
if not use_sample: |
|
segments = [(float(s)/sample_rate, float(e)/sample_rate) for s,e in segments] |
|
|
|
return audio_speech, segments, lambda t, t2 = None: do_convert_timestamps(segments, t, t2) |
|
|
|
def do_convert_timestamps(segments, t, t2 = None): |
|
""" |
|
Convert timestamp from audio without non-speech segments to original audio (with non-speech segments) |
|
|
|
parameters: |
|
segments: list of tuple (start, end) corresponding to non-speech segments in original audio |
|
t: timestamp to convert |
|
t2: second timestamp to convert (optional), when the two timestamps should be in the same segment |
|
""" |
|
assert len(segments) |
|
ioffset = 0 |
|
ooffset = 0 |
|
ipreviousend = 0 |
|
result = [] |
|
for istart, iend in segments: |
|
ostart = ooffset |
|
oend = ostart + (iend - istart) |
|
ooffset = oend |
|
ioffset += istart - ipreviousend |
|
ipreviousend = iend |
|
t_in = t <= oend |
|
t2_in = t_in if t2 is None else t2 <= oend |
|
if t_in or t2_in: |
|
result.append([ |
|
max(istart, min(iend, ioffset + t)), |
|
max(istart, min(iend, ioffset + t2)) if t2 is not None else None |
|
]) |
|
if t_in and t2_in: |
|
break |
|
if not len(result): |
|
result.append( |
|
[ioffset + t, ioffset + t2 if t2 is not None else None] |
|
) |
|
|
|
if len(result) > 1: |
|
|
|
result = sorted(result, key=lambda x: abs(abs(t2-t) - abs(x[1]-x[0]))) |
|
result = result[0] |
|
if t2 is None: |
|
result = round(result[0], 2) |
|
else: |
|
result = [round(x, 2) for x in result] |
|
return result |
|
|
|
def remove_last_null_duration_words(transcription, words, recompute_text=False): |
|
""" |
|
Remove words with null duration happening at the end of a chunk (probable Whisper hallucinations) |
|
""" |
|
|
|
segments_groups = {} |
|
seek = None |
|
current_chunk = -1 |
|
for i, segment in enumerate(transcription["segments"]): |
|
if segment["seek"] != seek: |
|
current_chunk += 1 |
|
seek = segment["seek"] |
|
segments_groups[i] = current_chunk |
|
|
|
|
|
current_chunk = -1 |
|
is_last_empty = False |
|
to_remove = [] |
|
for i, word in enumerate(words[::-1]): |
|
i = len(words) - i - 1 |
|
empty = (word["start"] == word["end"]) |
|
idx_segment = word["idx_segment"] |
|
group = segments_groups[idx_segment] |
|
if current_chunk != group: |
|
is_last_empty = empty |
|
current_chunk = group |
|
elif not empty: |
|
is_last_empty = False |
|
if is_last_empty: |
|
|
|
to_remove.append(i) |
|
|
|
full_word = "".join(word["tokens"]) |
|
logger.debug(f"Removing word {i+1}/{len(words)} \"{full_word}\" with empty duration at the end of segment {idx_segment+1}/{len(transcription['segments'])}") |
|
segment = transcription["segments"][idx_segment] |
|
text = segment["text"] |
|
if not text.endswith(full_word): |
|
if text.endswith(full_word[:-1]): |
|
full_word = full_word[:-1] |
|
elif text[:-1].endswith(full_word): |
|
text = text[:-1] |
|
else: |
|
raise RuntimeError(f"\"{text}\" not ending with \"{full_word}\"") |
|
text = text[:-len(full_word)] |
|
if i > 0 and words[i-1]["idx_segment"] == idx_segment: |
|
segment["text"] = text |
|
else: |
|
logger.debug(f"Removing empty segment {idx_segment}") |
|
|
|
transcription["segments"].pop(idx_segment) |
|
for j in range(i+1, len(words)): |
|
words[j]["idx_segment"] -= 1 |
|
recompute_text = True |
|
|
|
for i in to_remove: |
|
words.pop(i) |
|
|
|
if recompute_text: |
|
transcription["text"] = "".join([s["text"] for s in transcription["segments"]]) |
|
|
|
return transcription, words |
|
|
|
|
|
def ensure_increasing_positions(segments, min_duration=0): |
|
""" |
|
Ensure that "start" and "end" come in increasing order |
|
""" |
|
has_modified_backward = False |
|
previous_end = 0 |
|
for i, seg in enumerate(segments): |
|
if seg["start"] < previous_end: |
|
assert i > 0 |
|
new_start = round_timestamp((previous_end + seg["start"]) / 2) |
|
if new_start < segments[i-1]["start"] + min_duration: |
|
new_start = previous_end |
|
else: |
|
segments[i-1]["end"] = new_start |
|
has_modified_backward = True |
|
seg["start"] = new_start |
|
if seg["end"] <= seg["start"] + min_duration: |
|
seg["end"] = seg["start"] + min_duration |
|
previous_end = seg["end"] |
|
if has_modified_backward: |
|
return ensure_increasing_positions(segments, min_duration) |
|
|
|
previous_end = 0 |
|
for seg in segments: |
|
seg["start"] = round_timestamp(seg["start"]) |
|
seg["end"] = round_timestamp(seg["end"]) |
|
assert seg["start"] >= previous_end, f"Got segment {seg} coming before the previous finishes ({previous_end} > {seg['start']})" |
|
assert seg["end"] >= seg["start"], f"Got segment {seg} with end < start" |
|
previous_end = seg["end"] |
|
|
|
return segments |
|
|
|
|
|
|
|
def flatten(list_of_lists, key = None): |
|
for sublist in list_of_lists: |
|
for item in sublist.get(key, []) if key else sublist: |
|
yield item |
|
|
|
def remove_keys(list_of_dicts, key): |
|
for d in list_of_dicts: |
|
yield {k: d[k] for k in d.keys() - {key}} |
|
|
|
|
|
def write_csv(transcript, file, sep = ",", text_first=True, format_timestamps=None, header=False): |
|
writer = csv.writer(file, delimiter=sep) |
|
if format_timestamps is None: format_timestamps = lambda x: x |
|
if header is True: |
|
header = ["text", "start", "end"] if text_first else ["start", "end", "text"] |
|
if header: |
|
writer.writerow(header) |
|
if text_first: |
|
writer.writerows( |
|
[[segment["text"].strip(), format_timestamps(segment["start"]), format_timestamps(segment["end"])] for segment in transcript] |
|
) |
|
else: |
|
writer.writerows( |
|
[[format_timestamps(segment["start"]), format_timestamps(segment["end"]), segment["text"].strip()] for segment in transcript] |
|
) |
|
|
|
|
|
|
|
def force_cudnn_initialization(device=None, s=32): |
|
if device is None: |
|
device = get_default_device() |
|
torch.nn.functional.conv2d(torch.zeros(s, s, s, s, device=device), torch.zeros(s, s, s, s, device=device)) |
|
|
|
def get_default_device(): |
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
elif find_spec('torch.xpu') is not None and torch.xpu.is_available(): |
|
device = "xpu" |
|
else: |
|
device = "cpu" |
|
return device |
|
|
|
|
|
|
|
_ALIGNMENT_HEADS = { |
|
"tiny.en": b"ABzY8J1N>@0{>%R00Bk>$p{7v037`oCl~+#00", |
|
"tiny": b"ABzY8bu8Lr0{>%RKn9Fp%m@SkK7Kt=7ytkO", |
|
"base.en": b"ABzY8;40c<0{>%RzzG;p*o+Vo09|#PsxSZm00", |
|
"base": b"ABzY8KQ!870{>%RzyTQH3`Q^yNP!>##QT-<FaQ7m", |
|
"small.en": b"ABzY8>?_)10{>%RpeA61k&I|OI3I$65C{;;pbCHh0B{qLQ;+}v00", |
|
"small": b"ABzY8DmU6=0{>%Rpa?J`kvJ6qF(V^F86#Xh7JUGMK}P<N0000", |
|
"medium.en": b"ABzY8usPae0{>%R7<zz_OvQ{)4kMa0BMw6u5rT}kRKX;$NfYBv00*Hl@qhsU00", |
|
"medium": b"ABzY8B0Jh+0{>%R7}kK1fFL7w6%<-Pf*t^=N)Qr&0RR9", |
|
"large-v1": b"ABzY8r9j$a0{>%R7#4sLmoOs{s)o3~84-RPdcFk!JR<kSfC2yj", |
|
"large-v2": b'ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj', |
|
"large-v3": b"ABzY8gWO1E0{>%R7(9S+Kn!D~%ngiGaR?*L!iJG9p-nab0JQ=-{D1-g00", |
|
} |
|
|
|
_PARAMETERS_TO_MODEL_NAME = { |
|
37184256 : "tiny.en", |
|
37184640 : "tiny", |
|
71825408 : "base.en", |
|
71825920 : "base", |
|
240582144 : "small.en", |
|
240582912 : "small", |
|
762320896 : "medium.en", |
|
762321920 : "medium", |
|
1541384960 : "large", |
|
1541570560 : "large-v3", |
|
} |
|
|
|
def get_alignment_heads(model, max_top_layer=3): |
|
if hasattr(model, "alignment_heads"): |
|
return model.alignment_heads |
|
num_parameters = _get_number_of_parameters(model) |
|
num_layers = model.dims.n_text_layer |
|
num_heads = model.dims.n_text_head |
|
if num_parameters not in _PARAMETERS_TO_MODEL_NAME: |
|
logger.warning("Could not retrieve alignment heads : taking all attention heads from the top layers") |
|
return None |
|
model_name = _PARAMETERS_TO_MODEL_NAME[num_parameters] |
|
if model_name == "large": |
|
if next(model.parameters())[0,0,0] > 0: |
|
model_name = "large-v1" |
|
else: |
|
model_name = "large-v2" |
|
return _get_alignment_heads(model_name, num_layers, num_heads) |
|
|
|
def _get_alignment_heads(model_name, num_layers, num_heads): |
|
dump = _ALIGNMENT_HEADS[model_name] |
|
array = np.frombuffer(gzip.decompress(base64.b85decode(dump)), dtype=bool).copy() |
|
mask = torch.from_numpy(array).reshape(num_layers, num_heads) |
|
alignment_heads = mask.to_sparse() |
|
return alignment_heads |
|
|
|
def _get_number_of_parameters(model): |
|
num_parameters = 0 |
|
for name, p in model.named_parameters(): |
|
if name in ["decoder.proj_out.weight", "model.encoder.embed_positions.weight"]: |
|
continue |
|
num_parameters += p.numel() |
|
return num_parameters |
|
|
|
from typing import Optional, Union |
|
def load_model( |
|
name: str, |
|
device: Optional[Union[str, torch.device]] = None, |
|
backend: str = DEFAULT_BACKEND, |
|
download_root: str = None, |
|
in_memory: bool = False, |
|
): |
|
""" |
|
Load a model from the given name or path. |
|
|
|
Parameters |
|
---------- |
|
name : str |
|
Name of the model or path to the model. |
|
Examples: |
|
- OpenAI-Whisper identifier: "large-v3", "medium.en", ... |
|
- HuggingFace identifier: "openai/whisper-large-v3", "distil-whisper/distil-large-v2", ... |
|
- File name: "path/to/model.pt", "path/to/model.ckpt", "path/to/model.bin" |
|
- Folder name: "path/to/folder". The folder must contain either "pytorch_model.bin", "model.safetensors", or sharded versions of those, or "whisper.ckpt". |
|
device : str or torch.device, optional |
|
Device to use. If None, use CUDA if there is a GPU available, otherwise CPU. |
|
backend : str, optional |
|
Backend to use. Either "transformers" or "openai-whisper". |
|
download_root : str, optional |
|
Root folder to download the model to. If None, use the default download root (typically: ~/.cache) |
|
in_memory : bool, optional |
|
Whether to preload the model weights into host memory. |
|
""" |
|
if backend == "transformers": |
|
try: |
|
import transformers |
|
except ImportError: |
|
raise ImportError(f"If you want to use transformers backend, please install first the transformers library") |
|
if name in whisper.available_models(): |
|
name = f"openai/whisper-{name}" |
|
|
|
|
|
cache_dir=os.path.join(download_root, "huggingface", "hub") if download_root else None, |
|
try: |
|
generation_config = transformers.GenerationConfig.from_pretrained(name, cache_dir=cache_dir) |
|
except OSError: |
|
generation_config = transformers.GenerationConfig.from_pretrained("openai/whisper-tiny", cache_dir=cache_dir) |
|
processor = transformers.WhisperProcessor.from_pretrained(name, cache_dir=cache_dir) |
|
if device is None: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
precision = torch.float32 |
|
model = transformers.WhisperForConditionalGeneration.from_pretrained( |
|
name, |
|
|
|
|
|
torch_dtype=precision, |
|
|
|
|
|
|
|
cache_dir=cache_dir, |
|
) |
|
|
|
|
|
model = model.to(device) |
|
return TransformerWhisperAsOpenAIWhisper(model, processor, generation_config, precision) |
|
|
|
elif backend not in ["openai", "openai-whisper"]: |
|
raise ValueError(f"Got unexpected backend {backend}") |
|
|
|
extension = os.path.splitext(name)[-1] if os.path.isfile(name) else None |
|
|
|
if name in whisper.available_models() or extension == ".pt": |
|
return whisper.load_model( |
|
name, |
|
device=device, |
|
download_root=os.path.join(download_root, "whisper") if download_root else None, |
|
in_memory=in_memory |
|
) |
|
|
|
|
|
if extension in [".ckpt", ".bin"]: |
|
model_path = name |
|
else: |
|
|
|
try: |
|
import transformers |
|
except ImportError: |
|
raise ImportError(f"If you are trying to download a HuggingFace model with {name}, please install first the transformers library") |
|
from transformers.utils import cached_file |
|
|
|
kwargs = dict( |
|
cache_dir=os.path.join(download_root, "huggingface", "hub") if download_root else None, |
|
use_auth_token=None, |
|
revision=None, |
|
) |
|
try: |
|
model_path = cached_file(name, "pytorch_model.bin", **kwargs) |
|
except OSError as err: |
|
try: |
|
model_path = None |
|
for candidate in ["whisper.ckpt", "pytorch_model.bin.index.json", "model.safetensors", "model.safetensors.index.json"]: |
|
try: |
|
model_path = cached_file(name, candidate, **kwargs) |
|
except OSError: |
|
continue |
|
if candidate.endswith("index.json"): |
|
index_file = model_path |
|
mapping = json.load(open(index_file)) |
|
assert "weight_map" in mapping |
|
assert isinstance(mapping["weight_map"], dict) |
|
model_path = list(set(mapping["weight_map"].values())) |
|
folder = os.path.dirname(index_file) |
|
model_path = [os.path.join(folder, p) for p in model_path] |
|
break |
|
assert model_path is not None |
|
except: |
|
raise RuntimeError(f"Original error: {err}\nCould not find model {name} from HuggingFace nor local folders.") |
|
|
|
hf_state_dict = torch_load(model_path) |
|
|
|
|
|
for key in list(hf_state_dict.keys())[:]: |
|
new_key = hf_to_whisper_states(key) |
|
if new_key is None: |
|
hf_state_dict.pop(key) |
|
elif new_key != key: |
|
hf_state_dict[new_key] = hf_state_dict.pop(key) |
|
|
|
|
|
|
|
dims = whisper.model.ModelDimensions(**states_to_dim(hf_state_dict)) |
|
|
|
if "proj_out.weight" in hf_state_dict: |
|
hf_state_dict["decoder.proj_out.weight"] = hf_state_dict.pop("proj_out.weight") |
|
logger.warning("Using untied projection layer") |
|
whisper_model = WhisperUntied(dims) |
|
else: |
|
whisper_model = whisper.model.Whisper(dims) |
|
|
|
whisper_model.load_state_dict(hf_state_dict) |
|
del hf_state_dict |
|
if hasattr(whisper_model, "alignment_heads"): |
|
del whisper_model.alignment_heads |
|
whisper_model = whisper_model.to(device) |
|
return whisper_model |
|
|
|
def torch_load(model_path): |
|
if isinstance(model_path, list): |
|
hf_state_dict = {} |
|
for p in model_path: |
|
d = torch_load(p) |
|
for k in d: |
|
assert k not in hf_state_dict, f"Found duplicate key {k} in {p}" |
|
hf_state_dict.update(d) |
|
else: |
|
assert isinstance(model_path, str) |
|
if model_path.endswith(".safetensors"): |
|
from safetensors import safe_open |
|
hf_state_dict = {} |
|
with safe_open(model_path, framework="pt", device="cpu") as f: |
|
for k in f.keys(): |
|
hf_state_dict[k] = f.get_tensor(k) |
|
else: |
|
hf_state_dict = torch.load(model_path, map_location="cpu") |
|
return hf_state_dict |
|
|
|
|
|
|
|
class TransformerWhisperAsOpenAIWhisper: |
|
""" |
|
Wrapper to use a transformers model as a whisper model (at least in whisper-timestamped) |
|
""" |
|
|
|
def __init__(self, model, processor, generation_config, precision): |
|
|
|
self.model = model |
|
self.processor = processor |
|
self.generation_config = generation_config |
|
|
|
self.device = model.device |
|
self.precision = precision |
|
|
|
|
|
model_config = model.config |
|
self.dims = whisper.model.ModelDimensions( |
|
n_mels = model_config.num_mel_bins, |
|
n_audio_ctx = model_config.max_source_positions, |
|
n_audio_state = model_config.d_model, |
|
n_audio_head = model_config.encoder_attention_heads, |
|
n_audio_layer = model_config.encoder_layers, |
|
n_vocab = model_config.vocab_size, |
|
n_text_ctx = model_config.max_length, |
|
n_text_state = model_config.d_model, |
|
n_text_head = model_config.decoder_attention_heads, |
|
n_text_layer = model_config.decoder_layers, |
|
) |
|
|
|
|
|
self.tokenizer = processor.tokenizer |
|
( |
|
self.tokenizer.sot, |
|
self.tokenizer.eot, |
|
self.tokenizer.timestamp_begin, |
|
self.tokenizer.no_speech, |
|
self.tokenizer.no_timestamps, |
|
) = self.tokenizer.convert_tokens_to_ids([ |
|
"<|startoftranscript|>", |
|
"<|endoftext|>", |
|
"<|0.00|>", |
|
"<|nospeech|>", |
|
"<|notimestamps|>", |
|
]) |
|
if self.tokenizer.decode([self.tokenizer.timestamp_begin], decode_with_timestamps=True) != "<|0.00|>": |
|
|
|
logger.warning("Getting timestamp_begin token is not straightforward for this model") |
|
i = self.tokenizer.no_timestamps + 1 |
|
maxi = i + 1000 |
|
while self.tokenizer.decode([i], decode_with_timestamps=True) != "<|0.00|>": |
|
i += 1 |
|
if i == maxi: |
|
raise RuntimeError("Could not find timestamp_begin token") |
|
self.tokenizer.timestamp_begin = i |
|
|
|
self.tokenizer.all_language_tokens = self.tokenizer.convert_tokens_to_ids([ |
|
t for t in self.tokenizer.additional_special_tokens if len(t) in [6,7] |
|
]) |
|
|
|
if not hasattr(self.generation_config, "lang_to_id"): |
|
self.generation_config.lang_to_id = dict( |
|
(self.tokenizer.decode(itoken), itoken) |
|
for itoken in self.tokenizer.all_language_tokens |
|
) |
|
if not hasattr(self.generation_config, "task_to_id"): |
|
self.generation_config.task_to_id = dict( |
|
(task, self.tokenizer.encode("<|" + task + "|>", add_special_tokens=False)[0]) |
|
for task in ["transcribe", "translate"]) |
|
self.tokenizer.to_language_token = lambda language: self.generation_config.lang_to_id["<|" + norm_language(language) + "|>"] |
|
self.tokenizer.to_task_token = lambda task: self.generation_config.task_to_id[task] |
|
|
|
self.tokenizer.to_timestamp_token = lambda t: self.tokenizer.encode(f"<|{t:0.2f}|>", add_special_tokens=False)[0] |
|
self.tokenizer.decode_with_timestamps = lambda tokens: self.tokenizer.decode(tokens, decode_with_timestamps=True) |
|
|
|
self.generation_config.no_timestamps_token_id = self.tokenizer.no_timestamps |
|
self.model.generation_config = self.generation_config |
|
|
|
|
|
self.decoder = self.model.get_decoder() |
|
self.decoder.ln = self.decoder.layer_norm |
|
self.decoder.token_embedding = self.decoder.embed_tokens |
|
self.decoder.blocks = self.decoder.layers |
|
for block in self.decoder.blocks: |
|
block.cross_attn = block.encoder_attn |
|
|
|
|
|
if hasattr(generation_config, "is_multilingual"): |
|
self.is_multilingual = generation_config.is_multilingual |
|
else: |
|
self.is_multilingual = generation_config.is_multilingual = (self.tokenizer.sot != 50257) |
|
|
|
|
|
if hasattr(generation_config, "alignment_heads"): |
|
a = generation_config.alignment_heads |
|
self.alignment_heads = torch.sparse_coo_tensor(np.array(a).transpose(), [True]*len(a)).coalesce().to(self.device) |
|
|
|
def named_parameters(self): |
|
return self.model.named_parameters() |
|
|
|
def transcribe(self, audio, use_token_timestamps=False, **kwargs): |
|
|
|
|
|
|
|
generation_config = self.generation_config |
|
generation_config.num_beams = kwargs.get("beam_size", None) or 1 |
|
temperature = kwargs.get("temperature", 0.0) |
|
if isinstance(temperature, (list, tuple)): |
|
|
|
temperature = min(temperature) |
|
if temperature != 0.0: |
|
generation_config.do_sample = True |
|
generation_config.temperature = temperature |
|
generation_config.top_k = kwargs.get("best_of", None) |
|
|
|
initial_prompt = kwargs.get("initial_prompt") |
|
prompt_ids = self.processor.get_prompt_ids(initial_prompt) if (initial_prompt and initial_prompt.strip()) else None |
|
|
|
generate_kwargs = dict( |
|
return_dict_in_generate = True, |
|
return_segments = True, |
|
return_timestamps = True, |
|
return_token_timestamps = use_token_timestamps, |
|
max_length = self.dims.n_text_ctx, |
|
is_multilingual = self.is_multilingual, |
|
prompt_ids = prompt_ids, |
|
generation_config = generation_config, |
|
) |
|
if self.is_multilingual: |
|
generate_kwargs["language"] = generate_kwargs.get("language") |
|
generate_kwargs["task"] = generate_kwargs.get("task", "transcribe") |
|
|
|
|
|
features = self.processor( |
|
audio, |
|
return_tensors="pt", |
|
sampling_rate=16_000, |
|
truncation=False, |
|
).input_features.to(self.device) |
|
|
|
|
|
output = self.model.generate( |
|
features.to(self.precision), |
|
**generate_kwargs |
|
) |
|
|
|
|
|
if "segments" not in output: |
|
tokens = output.sequences[0] |
|
new_output = { |
|
"segments": [[{ |
|
"tokens": tokens[1:], |
|
"start": torch.tensor(0.0), |
|
"result": { |
|
"sequences": output.sequences[0], |
|
"past_key_values": output.past_key_values, |
|
} |
|
}]] |
|
} |
|
if use_token_timestamps: |
|
new_output["segments"][0][0]["result"]["token_timestamps"] = output.token_timestamps[0] |
|
output = new_output |
|
|
|
|
|
first_segment_tokens = output["segments"][0][0]["tokens"].tolist() |
|
if self.tokenizer.sot in first_segment_tokens: |
|
i_sot = first_segment_tokens.index(self.tokenizer.sot) |
|
else: |
|
i_sot = -1 |
|
if self.is_multilingual: |
|
language = self.tokenizer.decode([first_segment_tokens[i_sot+1]], decode_with_timestamps=True) |
|
assert len(language) in [6,7], f"Unexpected language detected: '{language}' ({first_segment_tokens[i_sot+1]}) in '{self.tokenizer.decode(first_segment_tokens, decode_with_timestamps=True)}'" |
|
language = language[2:-2] |
|
else: |
|
language = "en" |
|
|
|
if use_token_timestamps: |
|
remove_punctuation_from_words = kwargs.get("remove_punctuation_from_words", False) |
|
use_space = should_use_space(language) |
|
|
|
full_text = "" |
|
segments = [] |
|
for id, (segment_dict, segment) in enumerate(self._iter_segments(output, prompt_ids)): |
|
|
|
segment_dict = segment_dict | { |
|
"temperature": temperature, |
|
|
|
|
|
|
|
} |
|
|
|
|
|
if use_token_timestamps: |
|
tokens = segment_dict["tokens_no_timestamp"] |
|
offset = segment_dict["offset"] |
|
all_tokens = segment["result"]["sequences"].tolist() |
|
token_timestamps = segment["result"]["token_timestamps"] |
|
assert len(all_tokens) == len(token_timestamps) |
|
n_tokens = len(tokens) |
|
for i in range(0, len(all_tokens) + 1 - n_tokens): |
|
if all_tokens[i:i+n_tokens] == tokens: |
|
token_timestamps = token_timestamps[i:i+n_tokens+1] |
|
break |
|
assert len(tokens)+1 == len(token_timestamps) |
|
split_tokens = split_tokens_on_spaces if use_space else split_tokens_on_unicode |
|
words, word_tokens, word_tokens_indices = split_tokens(tokens, self.tokenizer, remove_punctuation_from_words=remove_punctuation_from_words) |
|
words_dicts = [] |
|
i_end = 0 |
|
for w, toks in zip(words, word_tokens_indices): |
|
i_start = i_end |
|
i_end = i_start + len(toks) |
|
words_dicts.append({ |
|
"text": w, |
|
"start": offset + token_timestamps[i_start].item(), |
|
"end": offset + token_timestamps[i_end].item(), |
|
|
|
}) |
|
segment_dict["words"] = words_dicts |
|
|
|
segment_dict.pop("tokens_no_timestamp") |
|
segment_dict.pop("offset") |
|
segments.append(segment_dict) |
|
full_text += segment_dict["text"] |
|
|
|
output_dict = { |
|
"text": full_text, |
|
"segments": segments, |
|
} |
|
if not kwargs.get("language"): |
|
output_dict["language"] = language |
|
|
|
return output_dict |
|
|
|
def _iter_segments(self, output, prompt_ids): |
|
|
|
id = -1 |
|
for sub_segments in output["segments"]: |
|
for segment in sub_segments: |
|
id += 1 |
|
chunk_start = round(max(0, segment["start"].item()), 2) |
|
tokens = segment["tokens"] |
|
if id == 0 and prompt_ids is not None: |
|
tokens = tokens[len(prompt_ids):] |
|
time_tokens = [(i, t.item()) for i, t in enumerate(tokens) if t >= self.tokenizer.timestamp_begin] |
|
i = 0 |
|
while i < len(time_tokens): |
|
i_start, token_start = time_tokens[i] |
|
relative_start = round((token_start - self.tokenizer.timestamp_begin) * AUDIO_TIME_PER_TOKEN, 2) |
|
assert relative_start >= 0 |
|
if i == 0: |
|
offset = chunk_start - relative_start |
|
assert offset >= 0, f"Got negative offset ({offset}) with {chunk_start=} and {relative_start=}" |
|
has_end = i + 1 < len(time_tokens) |
|
if has_end: |
|
i_end, token_end = time_tokens[i+1] |
|
|
|
while i + 2 < len(time_tokens): |
|
if time_tokens[i+2][0] == i_end + 1: break |
|
if i_end + 1 >= len(tokens) or tokens[i_end+1] in [self.tokenizer.eot]: break |
|
logger.warning(f"Unexpected prediction without 2 consecutive timestamps") |
|
i += 1 |
|
i_end, token_end = time_tokens[i+1] |
|
relative_end = round((token_end - self.tokenizer.timestamp_begin) * AUDIO_TIME_PER_TOKEN, 2) |
|
else: |
|
i_end = len(tokens) - 1 |
|
if tokens[i_end] == self.tokenizer.eot: i_end -= 1 |
|
relative_end = SEGMENT_DURATION |
|
start = offset + relative_start |
|
duration = relative_end - relative_start |
|
assert duration >= 0, f"Got negative duration ({duration}) with {relative_end=} and {relative_start=}" |
|
tokens_with_timestamps = tokens[i_start:i_end+1] |
|
text = self.tokenizer.decode(tokens_with_timestamps, skip_special_tokens=True) |
|
tokens_with_timestamps = tokens_with_timestamps.tolist() |
|
tokens_no_timestamp = tokens_with_timestamps[1:-1] if has_end else tokens_with_timestamps[1:] |
|
i += 2 |
|
if not len(tokens_no_timestamp): continue |
|
yield ( |
|
{ |
|
"id": id, |
|
"seek": round(offset * SAMPLE_RATE / HOP_LENGTH), |
|
"start": start, |
|
"end": start + duration, |
|
"text": text, |
|
"tokens": tokens_with_timestamps, |
|
"tokens_no_timestamp": tokens_no_timestamp, |
|
"offset": offset, |
|
}, |
|
segment, |
|
) |
|
|
|
|
|
def __call__(self, mfcc, tokens): |
|
output = self.model(mfcc.to(self.precision), decoder_input_ids=tokens, output_attentions=True) |
|
return output.logits |
|
|
|
|
|
def is_transformer_model(model): |
|
return isinstance(model, TransformerWhisperAsOpenAIWhisper) |
|
|
|
|
|
|
|
def hf_to_whisper_states(text): |
|
|
|
if text == "_mel_filters": |
|
return None |
|
|
|
|
|
if "default" in text: |
|
|
|
return None |
|
if text.startswith("base_model.model."): |
|
text = text[len("base_model.model."):] |
|
|
|
text = re.sub('.layers.', '.blocks.', text) |
|
text = re.sub('.self_attn.', '.attn.', text) |
|
text = re.sub('.q_proj.', '.query.', text) |
|
text = re.sub('.k_proj.', '.key.', text) |
|
text = re.sub('.v_proj.', '.value.', text) |
|
text = re.sub('.out_proj.', '.out.', text) |
|
text = re.sub('.fc1.', '.mlp.0.', text) |
|
text = re.sub('.fc2.', '.mlp.2.', text) |
|
text = re.sub('.fc3.', '.mlp.3.', text) |
|
text = re.sub('.fc3.', '.mlp.3.', text) |
|
text = re.sub('.encoder_attn.', '.cross_attn.', text) |
|
text = re.sub('.cross_attn.ln.', '.cross_attn_ln.', text) |
|
text = re.sub('.embed_positions.weight', '.positional_embedding', text) |
|
text = re.sub('.embed_tokens.', '.token_embedding.', text) |
|
text = re.sub('model.', '', text) |
|
text = re.sub('attn.layer_norm.', 'attn_ln.', text) |
|
text = re.sub('.final_layer_norm.', '.mlp_ln.', text) |
|
text = re.sub('encoder.layer_norm.', 'encoder.ln_post.', text) |
|
text = re.sub('decoder.layer_norm.', 'decoder.ln.', text) |
|
return text |
|
|
|
def states_to_dim(state_dict): |
|
n_audio_state = len(state_dict['encoder.ln_post.bias']) |
|
n_text_state = len(state_dict["decoder.ln.bias"]) |
|
return { |
|
"n_mels": state_dict["encoder.conv1.weight"].shape[1], |
|
"n_vocab": state_dict["decoder.token_embedding.weight"].shape[0], |
|
"n_audio_ctx": state_dict["encoder.positional_embedding"].shape[0], |
|
"n_audio_state": n_audio_state, |
|
"n_audio_head": n_audio_state // 64, |
|
"n_audio_layer": len(set([".".join(k.split(".")[:3]) for k in state_dict.keys() if "encoder.blocks." in k])), |
|
"n_text_ctx": state_dict["decoder.positional_embedding"].shape[0], |
|
"n_text_state": n_text_state, |
|
"n_text_head": n_text_state // 64, |
|
"n_text_layer": len(set([".".join(k.split(".")[:3]) for k in state_dict.keys() if "decoder.blocks." in k])), |
|
} |
|
|
|
class TextDecoderUntied(whisper.model.TextDecoder): |
|
""" |
|
Same as TextDecoder but with untied weights |
|
""" |
|
def __init__(self, *args, **kwargs): |
|
import torch |
|
super().__init__(*args, **kwargs) |
|
|
|
n_vocab, n_state = self.token_embedding.weight.shape |
|
|
|
self.proj_out = torch.nn.Linear(n_state, n_vocab, bias=False) |
|
|
|
def forward(self, x, xa, kv_cache = None): |
|
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0 |
|
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]] |
|
x = x.to(xa.dtype) |
|
|
|
for block in self.blocks: |
|
x = block(x, xa, mask=self.mask, kv_cache=kv_cache) |
|
|
|
x = self.ln(x) |
|
|
|
|
|
|
|
logits = self.proj_out.to(x.dtype)(x).float() |
|
|
|
return logits |
|
|
|
class WhisperUntied(whisper.model.Whisper): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.decoder = TextDecoderUntied( |
|
self.dims.n_vocab, |
|
self.dims.n_text_ctx, |
|
self.dims.n_text_state, |
|
self.dims.n_text_head, |
|
self.dims.n_text_layer, |
|
) |
|
|
|
def cli(): |
|
|
|
import os |
|
import sys |
|
import argparse |
|
import json |
|
|
|
from whisper.utils import str2bool, optional_float, optional_int |
|
|
|
try: |
|
|
|
from whisper.utils import write_txt, write_srt, write_vtt |
|
write_tsv = lambda transcript, file: write_csv(transcript, file, sep="\t", header=True, text_first=False, format_timestamps=lambda x: round(1000 * x)) |
|
|
|
except ImportError: |
|
|
|
from whisper.utils import get_writer |
|
|
|
def do_write(transcript, file, output_format): |
|
writer = get_writer(output_format, os.path.curdir) |
|
try: |
|
return writer.write_result({"segments": list(transcript)}, file, { |
|
"highlight_words": False, |
|
"max_line_width": None, |
|
"max_line_count": None, |
|
}) |
|
except TypeError: |
|
|
|
return writer.write_result({"segments": transcript}, file) |
|
def get_do_write(output_format): |
|
return lambda transcript, file: do_write(transcript, file, output_format) |
|
|
|
write_txt = get_do_write("txt") |
|
write_srt = get_do_write("srt") |
|
write_vtt = get_do_write("vtt") |
|
write_tsv = get_do_write("tsv") |
|
|
|
parser = argparse.ArgumentParser( |
|
description='Transcribe a single audio with whisper and compute word timestamps', |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter |
|
) |
|
parser.add_argument('-v', '--version', help="show version and exit", action='version', version=f'{__version__}') |
|
parser.add_argument('--versions', help="show versions (of whisper-timestamped and whisper) and exit", action='version', |
|
version=f'{__version__} -- Whisper {whisper.__version__} in {os.path.realpath(os.path.dirname(whisper.__file__))}') |
|
|
|
parser.add_argument('audio', help="audio file(s) to transcribe", nargs='+') |
|
parser.add_argument('--model', help=f"name of the Whisper model to use. Examples: {', '.join(whisper.available_models())}", default="small") |
|
parser.add_argument("--model_dir", default=None, help="the path to save model files; uses ~/.cache/whisper by default", type=str) |
|
parser.add_argument("--device", default=get_default_device(), help="device to use for PyTorch inference") |
|
parser.add_argument("--backend", default=DEFAULT_BACKEND, help="Which backend to use", choices=["openai-whisper", "transformers"], type=str) |
|
parser.add_argument("--output_dir", "-o", default=None, help="directory to save the outputs", type=str) |
|
valid_formats = ["txt", "vtt", "srt", "tsv", "csv", "json"] |
|
def str2output_formats(string): |
|
if string == "all": |
|
return valid_formats |
|
formats = string.split(",") |
|
for format in formats: |
|
if format not in valid_formats: |
|
raise ValueError(f"Expected one of {valid_formats}, got {format}") |
|
return formats |
|
parser.add_argument("--output_format", "-f", default="all", help=f"Format(s) of the output file(s). Possible formats are: {', '.join(valid_formats)}. Several formats can be specified by using commas (ex: \"json,vtt,srt\"). By default (\"all\"), all available formats will be produced", type=str2output_formats) |
|
|
|
parser.add_argument("--task", default="transcribe", help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')", choices=["transcribe", "translate"], type=str) |
|
parser.add_argument('--language', help=f"language spoken in the audio, specify None to perform language detection.", choices=sorted(whisper.tokenizer.LANGUAGES.keys()) + sorted([k.title() for k in whisper.tokenizer.TO_LANGUAGE_CODE.keys()]), default=None) |
|
|
|
|
|
parser.add_argument('--vad', default=False, help="whether to run Voice Activity Detection (VAD) to remove non-speech segment before applying Whisper model (removes hallucinations). " |
|
"Can be: True, False, auditok, silero (default when vad=True), silero:3.1 (or another version), or a list of timestamps in seconds (e.g. \"[(0.0, 3.50), (32.43, 36.43)]\"). " |
|
"Note: Some additional libraries might be needed (torchaudio and onnxruntime for silero, auditok for auditok)." |
|
) |
|
parser.add_argument('--detect_disfluencies', default=False, help="whether to try to detect disfluencies, marking them as special words [*]", type=str2bool) |
|
parser.add_argument('--recompute_all_timestamps', default=not TRUST_WHISPER_TIMESTAMP_BY_DEFAULT, help="Do not rely at all on Whisper timestamps (Experimental option: did not bring any improvement, but could be useful in cases where Whipser segment timestamp are wrong by more than 0.5 seconds)", type=str2bool) |
|
parser.add_argument("--punctuations_with_words", default=True, help="whether to include punctuations in the words", type=str2bool) |
|
|
|
parser.add_argument("--temperature", default=0.0, help="temperature to use for sampling", type=float) |
|
parser.add_argument("--best_of", type=optional_int, default=None if USE_EFFICIENT_BY_DEFAULT else 5, help="number of candidates when sampling with non-zero temperature") |
|
parser.add_argument("--beam_size", type=optional_int, default=None if USE_EFFICIENT_BY_DEFAULT else 5, help="number of beams in beam search, only applicable when temperature is zero") |
|
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search") |
|
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default") |
|
|
|
parser.add_argument("--suppress_tokens", default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations", type=str) |
|
parser.add_argument("--initial_prompt", default=None, help="optional text to provide as a prompt for the first window.", type=str) |
|
parser.add_argument("--condition_on_previous_text", default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop", type=str2bool) |
|
parser.add_argument("--fp16", default=None, help="whether to perform inference in fp16; Automatic by default (True if GPU available, False otherwise)", type=str2bool) |
|
|
|
parser.add_argument("--temperature_increment_on_fallback", default=0.0 if USE_EFFICIENT_BY_DEFAULT else 0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below", type=optional_float) |
|
parser.add_argument("--compression_ratio_threshold", default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed", type=optional_float) |
|
parser.add_argument("--logprob_threshold", default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed", type=optional_float) |
|
parser.add_argument("--no_speech_threshold", default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence", type=optional_float) |
|
parser.add_argument("--threads", default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS", type=optional_int) |
|
|
|
parser.add_argument("--compute_confidence", default=True, help="whether to compute confidence scores for words", type=str2bool) |
|
parser.add_argument("--verbose", type=str2bool, default=False, help="whether to print out the progress and debug messages of Whisper") |
|
parser.add_argument('--plot', help="plot word alignments (save the figures if an --output_dir is specified, otherwhise just show figures that have to be closed to continue)", default=False, action="store_true") |
|
parser.add_argument('--debug', help="print some debug information about word alignment", default=False, action="store_true") |
|
|
|
class ActionSetAccurate(argparse.Action): |
|
def __init__(self, option_strings, dest, nargs=None, **kwargs): |
|
assert nargs is None |
|
super().__init__(option_strings, dest, nargs=0, **kwargs) |
|
def __call__(self, parser, namespace, values, option_string=None): |
|
setattr(namespace, "best_of", 5) |
|
setattr(namespace, "beam_size", 5) |
|
setattr(namespace, "temperature_increment_on_fallback", 0.2) |
|
parser.add_argument('--accurate', help="Shortcut to use the same default option as in openai-whisper (best_of=5, beam_search=5, temperature_increment_on_fallback=0.2)", action=ActionSetAccurate) |
|
|
|
class ActionSetEfficient(argparse.Action): |
|
def __init__(self, option_strings, dest, nargs=None, **kwargs): |
|
assert nargs is None |
|
super().__init__(option_strings, dest, nargs=0, **kwargs) |
|
def __call__(self, parser, namespace, values, option_string=None): |
|
setattr(namespace, "best_of", None) |
|
setattr(namespace, "beam_size", None) |
|
setattr(namespace, "temperature_increment_on_fallback", None) |
|
parser.add_argument('--efficient', help="Shortcut to disable beam size and options that requires to sample several times, for an efficient decoding", action=ActionSetEfficient) |
|
|
|
parser.add_argument('--naive', help="use naive approach, doing inference twice (once to get the transcription, once to get word timestamps and confidence scores).", default=False, action="store_true") |
|
|
|
args = parser.parse_args().__dict__ |
|
args.pop("accurate") |
|
args.pop("efficient") |
|
|
|
temperature = args.pop("temperature") |
|
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback") |
|
if temperature_increment_on_fallback: |
|
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback)) |
|
else: |
|
temperature = [temperature] |
|
|
|
threads = args.pop("threads") |
|
if threads: |
|
torch.set_num_threads(threads) |
|
|
|
audio_files = args.pop("audio") |
|
|
|
model = args.pop("model") |
|
device = args.pop("device") |
|
model_dir = args.pop("model_dir") |
|
|
|
if device.lower().startswith("cuda"): |
|
force_cudnn_initialization(device) |
|
|
|
output_format = args.pop("output_format") |
|
backend = args.pop("backend") |
|
|
|
model = load_model(model, device=device, download_root=model_dir, backend=backend) |
|
|
|
plot_word_alignment = args.pop("plot") |
|
|
|
debug = args.pop("debug") |
|
logging.basicConfig() |
|
if debug: |
|
logger.setLevel(logging.DEBUG) |
|
|
|
logging.getLogger("WHISPER").setLevel(logging.DEBUG) |
|
|
|
output_dir = args.pop("output_dir") |
|
if output_dir and not os.path.isdir(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
args["naive_approach"] = args.pop("naive") |
|
args["remove_punctuation_from_words"] = not args.pop("punctuations_with_words") |
|
args["compute_word_confidence"] = args.pop("compute_confidence") |
|
args["trust_whisper_timestamps"] = not args.pop("recompute_all_timestamps") |
|
|
|
for audio_path in audio_files: |
|
|
|
outname = os.path.join(output_dir, os.path.basename(audio_path)) if output_dir else None |
|
|
|
result = transcribe_timestamped( |
|
model, audio_path, |
|
temperature=temperature, |
|
plot_word_alignment=outname if (outname and plot_word_alignment) else plot_word_alignment, |
|
**args |
|
) |
|
|
|
if output_dir: |
|
|
|
if "json" in output_format: |
|
|
|
with open(outname + ".words.json", "w", encoding="utf-8") as js: |
|
json.dump(result, js, indent=2, ensure_ascii=False) |
|
|
|
|
|
if "txt" in output_format: |
|
with open(outname + ".txt", "w", encoding="utf-8") as txt: |
|
write_txt(result["segments"], file=txt) |
|
|
|
|
|
if "vtt" in output_format: |
|
with open(outname + ".vtt", "w", encoding="utf-8") as vtt: |
|
write_vtt(remove_keys(result["segments"], "words"), file=vtt) |
|
with open(outname + ".words.vtt", "w", encoding="utf-8") as vtt: |
|
write_vtt(flatten(result["segments"], "words"), file=vtt) |
|
|
|
|
|
if "srt" in output_format: |
|
with open(outname + ".srt", "w", encoding="utf-8") as srt: |
|
write_srt(remove_keys(result["segments"], "words"), file=srt) |
|
with open(outname + ".words.srt", "w", encoding="utf-8") as srt: |
|
write_srt(flatten(result["segments"], "words"), file=srt) |
|
|
|
|
|
if "csv" in output_format: |
|
with open(outname + ".csv", "w", encoding="utf-8") as csv: |
|
write_csv(result["segments"], file=csv) |
|
with open(outname + ".words.csv", "w", encoding="utf-8") as csv: |
|
write_csv(flatten(result["segments"], "words"), file=csv) |
|
|
|
|
|
if "tsv" in output_format: |
|
with open(outname + ".tsv", "w", encoding="utf-8") as csv: |
|
write_tsv(result["segments"], file=csv) |
|
with open(outname + ".words.tsv", "w", encoding="utf-8") as csv: |
|
write_tsv(flatten(result["segments"], "words"), file=csv) |
|
|
|
elif not args["verbose"]: |
|
|
|
json.dump(filtered_keys(result), sys.stdout, indent=2, ensure_ascii=False) |
|
|
|
|
|
def filtered_keys(result, keys = [ |
|
"text", |
|
"segments", "words", |
|
"language", |
|
"start", |
|
"end", |
|
"confidence", |
|
"language_probs", |
|
"speech_activity", |
|
]): |
|
if isinstance(result, dict): |
|
return {k: (filtered_keys(v, keys) if k not in ["language_probs"] else v) for k, v in result.items() if k in keys} |
|
if isinstance(result, list): |
|
return [filtered_keys(v, keys) for v in result] |
|
if isinstance(result, float): |
|
return round(result, 2) |
|
return result |
|
|
|
|
|
if __name__ == "__main__": |
|
cli() |
|
|