Upload folder using huggingface_hub
Browse files- README.md +35 -0
- q-learning.pkl +3 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- FrozenLake-v1-4x4
|
4 |
+
- q-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- custom-implementation
|
7 |
+
model-index:
|
8 |
+
- name: q-learning_FrozenLake-v1_slippery4x4_v0
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: reinforcement-learning
|
12 |
+
name: reinforcement-learning
|
13 |
+
dataset:
|
14 |
+
name: FrozenLake-v1-4x4
|
15 |
+
type: FrozenLake-v1-4x4
|
16 |
+
metrics:
|
17 |
+
- type: mean_reward
|
18 |
+
value: 0.64 +/- 0.48
|
19 |
+
name: mean_reward
|
20 |
+
verified: false
|
21 |
+
---
|
22 |
+
|
23 |
+
# **Q-Learning** Agent playing1 **FrozenLake-v1**
|
24 |
+
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
|
25 |
+
|
26 |
+
## Usage
|
27 |
+
|
28 |
+
```python
|
29 |
+
|
30 |
+
model = load_from_hub(repo_id="achgls/q-learning_FrozenLake-v1_slippery4x4_v0", filename="q-learning.pkl")
|
31 |
+
|
32 |
+
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
|
33 |
+
env = gym.make(model["env_id"])
|
34 |
+
```
|
35 |
+
|
q-learning.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33556f93256dec16eaed919349d20aae757242b8e397e3db38e88062eaff12c3
|
3 |
+
size 702
|
replay.mp4
ADDED
Binary file (38.1 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"env_id": "FrozenLake-v1", "mean_reward": 0.64, "n_eval_episodes": 100, "eval_seed": [16, 54, 165, 177, 191, 191, 120, 80, 149, 178, 48, 38, 6, 125, 174, 73, 50, 172, 100, 148, 146, 6, 25, 40, 68, 148, 49, 167, 9, 97, 164, 176, 61, 7, 54, 55, 161, 131, 184, 51, 170, 12, 120, 113, 95, 126, 51, 98, 36, 135, 54, 82, 45, 95, 89, 59, 95, 124, 9, 113, 58, 85, 51, 134, 121, 169, 105, 21, 30, 11, 50, 65, 12, 43, 82, 145, 152, 97, 106, 55, 31, 85, 38, 112, 102, 168, 123, 97, 21, 83, 158, 26, 80, 63, 5, 81, 32, 11, 28, 148], "eval_datetime": "2023-05-01T16:35:49.058055"}
|